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Groundwater is a very important and invaluable natural resource. Its unique
qualities thatitis generally free from pathogens, easily accessible and free from
suspended particles has made it the most important and preferred source of
water for agricultural and domestic uses. It is estimated that groundwater
provides about 50% of the current global domestic water supply, 40% of the
industrial supply, and 20% of water use in irrigated agriculture. In the
developing countries, it is emerging as a poverty-alleviation tool owing to the
fact that groundwater can be delivered directly to poor communities more cost-
effectively, promptly and easily than the surface water

However, the dwindling of groundwater levels and aquifer depletion due to
over-exploitation together with growing pollution of groundwater are
threatening the sustainability of water supply and ecosystems. Numerous
consequences of unsustainable groundwater use are becoming increasingly
apparent worldwide, particularly in developing countries and the major concern
is how to maintain a long-term sustainable yield from aquifers. The
groundwater simulation models have emerged as the tool of choice among
water resources researchers and planners for addressing questions about the
impacts of groundwater development. But the physically based modeling
techniques are very data intensive, labour intensive and expensive. In such
cases, when sufficient data is not available and getting accurate predictions is
more important than conceiving the actual physics of the system, empirical
models like artificial neural networks serve an attractive alternative as they can
provide usefulresults using relatively less dataand time.

In the current study, artificial neural network models have been developed for
groundwater level forecasting in Kathajodi-Surua Inter-basin within Mahanadi
Deltaic system of Odisha. Three different training algorithms, i.e. Gradient
descent with momentum and adaptive learning rate backpropagation (GDX)
algorithm, Levenberg- Marquardt (LM) algorithm and Bayesian regularization
(BR) algorithm have been used and compared for their efficacy in forecasting
groundwater levels. The neural network models have been used to forecast
groundwater levels for higher lead times as well. It was found that artificial
neural network technique can be successfully used for groundwater level
forecastingin deltaicaquifers.
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1. Introduction

Groundwater is an invaluable natural resource which supports human health, economic
development and ecological diversity. It is renewable but finite resource, which is generally
characterized by stable temperature and chemical composition. Its unique qualities that it is
generally free from pathogens, easily accessible and free from suspended particles has made it the
most important and preferred source of water for agricultural and domestic uses. However,
overexploitation of groundwater has resulted in adverse effects on the local and regional
ecosystems at different parts of the world. A growing number of regions are facing increasing water
stresses owing to burgeoning water demands, profligate use, and escalating pollution worldwide
(Rodda, 1992; Falkenmark and Lundqvist, 1997). Hence, the key concern is how to maintain a
long-term sustainable yield from aquifers (e.g., Hiscock ez al., 2002; Alley and Leake, 2004) in the
face of impending climate effects and socio-economic changes.

Groundwater simulation models have emerged as an important tool to help water resources
researchers and planners to optimize groundwater use and to protect this vital resource. Physically
based numerical models are being used during past several years for simulation and analysis of
groundwater systems and thereby taking corrective measures for the efficient utilization of water
resources. With the proliferation of use of computers, they are being widely used by engineers,
hydrogeologists and environmentalists to solve problems ranging from aquifer safe yield analysis
to groundwater quality and remediation issues. However, these modeling techniques are very data
intensive, labour intensive and expensive. Under data-scarce conditions, which are a common
scenario in most developing countries, the use of physical based models is highly restricted.
Therefore, in such cases, empirical models serve an attractive alternative as they can provide useful
results using relatively less data and are less laborious and cost-effective. Artificial Neural Network
(ANN) techniques are one of such models, which are treated as universal approximators and have
the ability to identify a relationship from a given pattern (ASCE 2000a). Unlike physically based
numerical models, ANNs do not require explicit characterization and quantification of physical
properties, nor accurate representation of the governing physical laws (Coppola et al., 2005). The
ability to learn and generalize from sufficient data pairs makes it possible for ANNs to solve large-
scale complex problems (ASCE 2000a; Haykin 1999) including water management problems.

The applications of ANN technique in hydrology range from real-time modeling to event-based
modeling. It has been used for rainfall-runoff modeling, precipitation forecasting as well as for
modeling of streamflows, evapotranspiration, water quality and groundwater (Gobindraju and
Ramchandra Rao 2000; ASCE 2000a, b). Compared to surface water hydrology, relatively less
number of studies on ANN application in groundwater hydrology has been reported in the
literature. In groundwater hydrology, the neural network technique has been used for aquifer
parameter estimation (Aziz and Wong 1992; Morshed and Kalurachchi 1998; Balkhair 2002;
Shigdi and Garcia 2003; Garcia and Shigdi 2006; Samani et al. 2007; Karahan and Ayvaz 2008;
Viveros and Parra 2014), groundwater quality prediction (Hong and Rosen 2001; Milot et al. 2002;
Kuo et al. 2004; Banerjee et al. 2011, Chang et al. 2013), and groundwater level prediction




(Coulibalyetal.2001; Coppolaetal. 2003; Coppola et al. 2005; Daliakopoulos et al. 2005; Nayak et
al. 2006; Uddameri, 2007; Krishna et al. 2008; Ghose et al. 2010; Mohanty et al. 2010; Yoon et al.
2011; Taormina et al. 2012; Sahoo and Jha, 2013; He et al., 2014; Emamgholizadeh et al., 2014). In
most of the past studies on ANN modeling of groundwater level, ANN models were developed for
simulating groundwater level in a single well or in a few wells only. However, in this study, the
application of ANN approach for the weekly forecasting of groundwater levels in a group of wells in
an alluvial aquifer system has been done.

2.Study Area

The study area is a typical river island within Mahanadi deltaic system of eastern India and is
surrounded on both sides by the Kathajodi River and its branch Surua (Fig.1). It is locally called as
‘Bayalish Mouza’ and have an enclosed area of 35 km. It is located between 85° 54’ 21" to 86’ 00
41" E longitude and 20" 21° 48" t0 20° 26 00" N latitude. The study area has a tropical humid climate
with an average annual rainfall of 1650 mm, of which 80% occurs during June to October months.
The normal mean monthly maximum and minimum temperatures of the region are 38.8°C and 15.5°
C in May and December, respectively. The mean monthly maximum and minimum
evapotranspiration rates are 202.9 mm and 80.7 mm in May and December, respectively.
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Fig. 1: Location of the study area along with pumping and observation wells




Agriculture is the major occupation of the inhabitants. Total cultivated area in the study area is 2445
ha, of which 1365 ha is irrigated land. The area under low land is 408 ha, medium land 1081 ha and
high land is 956 ha. Paddy is the major crop in the monsoon season, whereas crops like vegetables,
potato, groundnut, greengram, blackgram and horsegram are grown in the post-monsoon season.
Surface irrigation infrastructure is not there in the study area and all the irrigated lands are irrigated
by groundwater. At present there are 69 functioning government tubewells in the basin, which are
the major sources of groundwater withdrawal. These tubewells were earlier constructed and
managed by Orissa Lift Irrigation Corporation (OLIC), Cuttack, Orissa, but now they have been
handed over to the water users’ associations (WUAs). Although there is no water shortage during
the monsoon season, in the summer season, the farm ponds dry up and the groundwater supply is not
sufficient to meet the entire water demand for irrigation.

During the monsoon season, a different kind problem, i.e. waterlogging is encountered in the study
area. Embankments have been provided on the banks of the rivers to prevent the entry of river water
into the inhabited area during flood events. Therefore, entire rainwater of the region is drained
through the main drain and discharged at a single outlet into the river. A sluice gate is provided at the
outlet of the area to prevent entry of river water during flood events. During this time, surface
waterlogging problem is often encountered in the downstream side of the study area.

2.1 Groundwater monitoring

Since no groundwater data were available in the study area, a groundwater monitoring program was
initiated in February 2004. For the monitoring of groundwater levels, nineteen tubewells were
selected spread over the study area. The locations of the nineteen monitoring wells are shown as red
circles (Ato S)in Fig. 1. The other tubewells are shown as blue circles (1 to 50). Groundwater levels
were monitored in the 19 tubewells on a weekly basis from February 2004 to October 2007. The
geographic locations of the tubewells in the study area were found with the help of a global
positioning system (GPS).

3. Concept of Artificial Neural Network Modelling

Artificial neural network (ANN) is a massively parallel-distributed information processing system
that has certain performance characteristics, which resemble the biological neural network of
human brain (Haykin, 1999). In the human brain, ‘neuron’ is a fundamental unit that receives and
combines signals from other neurons through input paths called ‘dendrites’. If the combined input
signal is stronger than the threshold value, the neuron activates, producing an output signal, which
is transferred through the ‘axon’to the dendrites of many other neurons (Haykin, 1999). Each signal
coming into a neuron along a dendrite passes through a junction called ‘synapse’. This junction is
filled with neurotransmitter fluid that either accelerates or retards the flow of electrical charges to
the cell body called ‘soma’. This functioning of a biological neuron forms the basis of ANN
modeling.




3.1 Neural network architectures

ANN is characterized by its architecture that represents the pattern of connection between the nodes
(input, hidden and output nodes), its method of determining the connection weights and the
activation function (Fausett, 1994). The neural network architecture can be classified based on
number of layers or based on the direction of information flow and processing. Some of the
prominent neural network architectures are: (a) feedforward networks, (b) recurrent networks, (c)
radial basis functions and (d) self-organizing feature maps (ASCE, 2000a).

Feedfroward neural network (FNN) is one of the simplest neural networks and has been
successfully used for water resources variable modeling and prediction (Maier and Dandy, 2000;
ASCE, 2000a). In this network, the nodes are generally arranged in layers, starting from a first input
layer and ending at the final output layer with information passing from the input to output side.
There can be several hidden layers with each layer having one or more nodes. Figure 2 shows a
typical feedforward network having one hidden layer with several nodes in the input and output
layer. The nodes in one layer are connected to those in the next, but not to those in the same layer.
Thus, the output of a node in a layer is only dependant on the input it receives from previous layers
and corresponding weights. The main advantage of feedforward neural networks is that they are
easy to handle, and can approximate any input/output map (Hornik ez a/., 1989). In this study,
feedforward neural network architecture has been used.
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Fig. 2: A Typical Feedforward Three-layer Neural Network (ASCE, 2000a)

In the recurrent neural network architecture, information flows through the nodes in both
directions, from input to the output side and vice versa. This is generally achieved by provision of




one feedback loop for recycling previous network outputs as current inputs (Haykin, 1999). Lateral
connections are sometimes used where nodes within a layer are also connected. Further, a radial
basis function network is a three- layer network in which the hidden layer performs a fixed non-
linear transformation with no adjustable parameters (Leonard et al., 1992). This layer consists of a
number of nodes and a parameter vector called centre which can be considered the weight vector of
the hidden layer. The self-organizing feature maps are typically used for density estimation or for
projecting patterns from high dimensional to low dimensional space. This projection is non-
parametric and is obtained by mapping input patterns into the responses of a lattice (ASCE, 2000a).

3.2 Training algorithms

Coulibaly et al. (1999) reported that more than 23 learning rules have been proposed for training an
artificial neural network; however, none of them can guarantee the global minimum solution.
Therefore, efficient network training is a challenging part of neural network design. A critical
examination of the available literature indicates that more than 90% of the experiments make use of
feedforward neural network trained by standard backpropagation algorithm (BPA), which is
basically a gradient- based optimization technique developed by Rumelhart et al. (1986). Standard
backpropagation is a gradient descent algorithm in which network weights are moved along the
negative of the gradient of the performance function. The term ‘backpropagation’ refers to the
manner in which the gradient is computed for nonlinear multilayer networks.

Although backpropagation training has proved to be efficient in several applications, it has inherent
limitations of gradient-based techniques such as slow convergence and the local search nature.
Among the various modifications proposed to the backpropagation algorithm, the conventional
second-order nonlinear optimization methods such as the conjugate-gradient, the Levenberg-
Marquardt and the quasi-Newton algorithms are usually faster than any variant of the BPA
(Masters, 1995; Hagen et al., 1996). The Levenberg-Marquardt algorithm is designed specifically
for minimizing a sum of squared error (Bishop, 1995) and to overcome the limitations in the
standard BPA.

Building a model with minimum number of input variables and parameters to achieve a high
predictive accuracy without under or over fitting problems is very essential. Too many neurons in
the hidden layer lead to over fitting, i.e., the training data will be well modeled but the network
models the noise in the data as well as the trends (Maier and Dandy, 1998). On the other hand, a
network with an insufficient number of hidden nodes will have difficulty in learning data. Thus,
both too small and too large networks have poor prediction performance, i.e., the network will not
generalize well on the testing data. To overcome this problem, Mackay (1991) proposed the use of
Bayesian regularization algorithm which is able to deal with the overfitting issue. A brief
description of gradient descent with momentum and adaptive learning rate backpropagation (GDX)
algorithm, Levenberg-Marquardt (LM) algorithm and Bayesian regularization (BR) algorithm is
presented below; these algorithms have been used in this study.




Gradient descent with momentum and adaptive learning rate backpropagation (GDX)
algorithm

With a standard backpropagation algorithm, the learning rate is held constant throughout the
training. The performance of the algorithm is very sensitive to the proper setting of learning rate. If
the learning rate is set too high, the algorithm may oscillate and become unstable. If the learning rate
is too small, the algorithm will take too long time to converge. In order to overcome this problem,
the gradient descent with momentum and adaptive learning rate backpropagation (GDX) algorithm
has been proposed, which combines adaptive learning rate with momentum training (Haykin,
1999). An adaptive learning rate attempts to keep the learning step size as large as possible while
keeping learning stable. Each variable is adjusted according to the gradient descent with
momentum. Acting like a low-pass filter, momentum allows the network to ignore small features in
the error surface. This training algorithm is one of the simplest and most common ways to train a
network (Haykin, 1999).

Levenberg- Marquardt (LM) algorithm

In the backpropagation algorithm, the local gradient given by gradient descent does not point
directly towards the minimum. Gradient-descent then takes many small steps to reach minimum
and thus leads to slow learning. To overcome this difficulty, the Levenberg-Marquardt algorithm,
which is a second-order optimization procedure for multilayer FNN training, is used. The
Levenberg-Marquardt algorithm is a modification of the well-known Newton algorithm for finding
an optimal solution to a minimization problem (Bishop, 1995). It is designed to approach a second-
order training speed and accuracy without having to compute the Hessian matrix. It uses an
approximate to the Hessian matrix in the following Newton-like weight update (Daliakopoulos et
al., 2005).

X =X, —[.J"'-.! +.H.|’] e

Where, x = weights of the neural network, J = Jacobian matrix of the performance criteria to be
minimized, m = a scalar that controls the learning process, and e = residual error vector. When the
scalar m is zero, this is just Newton’s method using the approximate Hessian matrix. When m is
large, Eqn. (3.19) becomes gradient descent with a small step size. As the Newton’s method is faster
and more accurate near an error minimum, the goal is to shift towards Newton’s method as quickly
aspossible.

The Levenberg-Marquardt algorithm is one of the fastest methods for training feedforward neural
networks. However, due to high memory requirement, it can only be used in small networks (Maier
and Dandy, 1998). Nevertheless, many researchers have been using it successfully (e.g., Coulibaly
etal., 2000; Toth et al., 2000; Coulibaly et al., 2001; Anctil et al., 2004; Daliakopoulos ez al., 2005).




Bayesian regularization (BR) algorithm

The Bayesian approach involves the optimization of an objective function that comprises the
conventional sum of squared error (SSE) function as well as an additional term called ‘regularizer’.
The motivation for using the regularizer is to penalize the more complex weight functions in favour
of simpler functions. The Bayesian approach also enables the optimal weight decay parameters to
be adjusted automatically during training (Mackay, 1991; Bishop, 1995). The salient advantages of
Bayesian updating are as follows:

It provides a unifying approach for dealing with issues of model complexity and
overfitting.

The modification in the error function aims to improve the model’s generalization
capability.

The prediction generated by a trained model can be assigned an error bar to indicate its
confidence level.

In the Bayesian framework, the uncertainty in the weight space is assigned a probability
distribution representing the degree of belief in the different values of the weight vector. This
function is initially set to some prior distribution. Once the data have been observed, it can be
converted to a posterior distribution through the use of Baye’s theorem. By maximizing the
posterior distribution over the weights, the most probable parameter values can be obtained. The
Bayesian regularization algorithm has been effectively used by several researchers (e.g., Porter et
al., 2000; Coulibaly ez al., 2001; Anctil et al., 2004; Daliakopoulos et al., 2005).

4. Development of Neural Network Model for Groundwater Level
Forecasting

In the development of ANN models, the steps like selection of adequate model inputs, data division
and pre-processing, the choice of suitable network architecture, selection of network internal
parameters, termination criteria and model testing need careful addressing (Maier and Dandy,
2000). The present study was taken up to develop neural network models to assess their efficacy in
predicting groundwater levels in the study area. In most of the past studies on groundwater level
prediction by ANN, models have been developed for predicting groundwater levels in a single well
or a few selected wells using a set of input parameters. However, in the present study, an attempt has
been made to predict groundwater levels simultaneously in a large number of wells over the basin
by using ANN technique.

4.1 Design of ANN models

Determination of appropriate network architecture and training algorithm is one of the most
important tasks in the model building process. An optimal architecture may be considered the one
yielding the best performance in terms of error minimization, while retaining a simple and compact
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structure (ASCE, 2000a). The ANN architecture and training algorithms are generally selected
based on the past experience in the field of research, or by comparative evaluation of different
architectures and/or algorithms. In the present study, widely used feedforward neural network
architecture was used. Three ANN models, namely gradient descent with momentum and adaptive
learning rate backpropagation (GDX) algorithm, Levenberg-Marquardt (LM) algorithm and
Bayesian regularization (BR) algorithm were used for predicting groundwater levels in Kathajodi-
Surua Inter-basin. The ANN models were designed to predict groundwater levels in 18 tubewells
(Fig. 1) with one-week lead time using a set of suitable input parameters.

4.2 Selection of input parameters

One of the most important steps in the ANN model development process is the determination of
significant input variables. A firm understanding of the hydrological and hydrogeological systems
under consideration can lead to a better choice of input variables (ASCE, 2000a). This helps in
avoiding omission of key input variables and preventing inclusion of spurious inputs that tend to
confuse the training process. Generally, some degree of a priori knowledge is used to specify the
initial set of candidate inputs (Campolo et al., 1999; Thirumalaiah and Deo, 2000). Although a
prioriidentification is widely used in many applications and is necessary to define a possible set of
inputs, it is dependent on an expert’s knowledge, and hence is very subjective and case dependent.
When the relationship to be modeled is not well understood, then analytical techniques, such as
cross-correlation and auto-correlation are often employed (e.g., Sajikumar and Thandaveswara,
1999; Coulibaly et al., 2000; Sudheer et al., 2002). However, a major disadvantage associated with
using cross-correlation is that it is only able to detect linear dependence between two variables.
Therefore, cross-correlation is sometimes unable to capture any nonlinear dependence that may
exist between the inputs and the output, and may possibly result in the omission of important inputs
that are related to the output in a nonlinear fashion. Intuitively, the preferred approach for
determining appropriate inputs involves a combination of a priori knowledge and analytical
approaches (Maier and Dandy, 1997).

In the present study, the input parameters for the ANN model were decided by considering the
parameters which have potential to affect the groundwater level. The groundwater level at 1-week
lag time, weekly rainfall and river stage were considered as input parameters as they definitely
affect the groundwater level 1 week ahead. In a semi-confined aquifer, apart from rainfall,
evaporation is another hydrologic parameter which can influence the recharge to groundwater.
Therefore, weekly pan evaporation was also considered as one of the input parameters for the ANN
model. Moreover, in the study area, entire rainwater of the area is drained through a main drain and
discharged at a single outlet into the river. A sluice gate is provided at the outlet of the area to prevent
entry of river water during flood events. During these flood events, water level in the main drain
rises and waterlogging problem is encountered in the downstream side of the study area. The water
level in the main drain was also considered as an input parameter because it influences the
groundwater, especially in the downstream portion of the study area.




The correlation coefficients between the groundwater levels with the selected input parameters
were calculated to analyze their suitability for selection as input parameters. The correlation
coefficients of groundwater level with the groundwater level at 1-week lag time, weekly rainfall,
river stage, evaporation and water level in the main drain are shown in Table 1. The correlation
coefficient (r) of groundwater level with the groundwater level at 1-week lag time varies from a
minimum of 0.895 to a maximum of 0.965, whereas that between groundwater level and weekly
rainfall varies from a minimum of 0.333 to a maximum of 0.659. The correlation coefficient of
groundwater level with river stage varies from a minimum of 0.686 to a maximum of 0.891,
whereas the correlation coefficient of groundwater level with weekly evaporation varies from a
minimum of 0.311 to a maximum of 0.557. On the other hand, the correlation coefficient of
groundwater level with water level in the drain varies from a minimum of 0.582 to a maximum of
0.758. From Table 1, it is evident that groundwater level has best correlation with groundwater-

Table 1: Correlation Coefficients for Groundwater Level versus Different Inputs

Correlation Coefficient (r)

Groundwater | Groundwater | Groundwater | Groundwater | Groundwater

Site Level versus | Level versus Level Level versus | Level versus

Groundwater Weekly versus Weekly Water Level

Level at 1-Week |  Rainfall River Stage Evaporation in the Drain

Lag Time

Site A 0.952 0.382 0.728 0.469 0.616
Site B 0.948 0.381 0.729 0.523 0.640
Site C 0.952 0.375 0.720 0.476 0.621
Site D 0.950 0.376 0.737 0.456 0.626
Site E 0.954 0.358 0.703 0.540 0.609
Site F 0.949 0.379 0.722 0.507 0.641
Site G 0915 0.589 0.886 0.311 0.752
Site H 0.959 0.380 0.725 0.506 0.601
Site T 0.951 0.398 0.741 0.515 0.638
Site J 0.965 0.333 0.686 0.557 0.582
Site K 0.939 0.578 0.857 0.346 0.732
Site L 0.920 0.581 0.867 0.362 0.750
Site M 0.955 0.585 0.860 0.362 0.744
Site N 0.895 0.659 0.812 0.400 0.728
Site O 0.921 0.627 0.878 0.311 0.745
Site P 0.935 0.582 0.891 0.370 0.758
Site Q 0.931 0.586 0.887 0.357 0.756
Site R 0.950 0.562 0.844 0.397 0.748
Site S 0.931 0.581 0.879 0.353 0.776




level at 1-week lag time followed by river stage and water-level in the drain, respectively. The
correlation coefficient between the groundwater-level and weekly rainfall is less than 0.5 at 9 sites,
whereas the same with weekly evaporation is less than 0.5 at 13 sites. In spite of low r values at some
sites, all the parameters were considered as inputs for ANN modeling because r reflects only linear
correlation, but ANN takes care of non-linear correlation also.

There are 69 tubewells in the study area. However, by considering weekly pumping of 69 tubewells,
69 input parameters made the model quite big and difficult to work with. Hence for ANN modeling,
it was assumed that the weekly pumping of selected 18 tubewells represents the specific pumping
pattern in that locality, which is reasonable for the study area because the 18 tubewells are uniformly
distributed over the area and the pumping pattern of each of the 18 tubewells almost matches with
the nearby tubewells. Hence, the pumping rates of the 18 tubewells were considered as ANN input
parameters. Thus, there were altogether 40 input nodes and 18 output nodes in the initial ANN
model of the study area. The 40 input nodes represent groundwater levels with 1-week lag time at
the 18 sites, groundwater pumping rates of the 18 tubewells, weekly rainfall, average weekly pan
evaporation, average weekly river stage, and average weekly water level at the drain outlet. The 18
output nodes represent groundwater levels at the 18 sites in the next time step (i.e., one week ahead).

4.3 Clustering of the study area

The ANN model having 40 input nodes and 18 output nodes was difficult to be trained by the trial
and error method while using Levenberg-Marquardt (LM) and Bayesian regularization (BR)
algorithms; they consumed a lots of computer memory and proved to be very time consuming.
Maier and Dandy (1998) also reported that the Levenberg-Marquardt algorithm has a great
computational and memory requirement, and hence it is mostly useful for small networks. The same
is true for the Bayesian regularization algorithm also. In contrast, the GDX algorithm could
effectively be evaluated through trial and error procedure due to less memory and computational
requirements. In order to run the LM and BR models effectively, an effort was made to reduce the
size of the neural network by dividing the study area into three clusters as shown in Fig. 3, and
developing three separate ANN models for the three clusters to predict groundwater levels one week
advance at the sites present in a particular cluster. Cluster 1 contains 7 sites namely A, B, D, E, H, I
andJ. Cluster2 contains 5 sites namely C, F, G, K and L, and Cluster 3 contains 6 sites namely M, O,
P, Q, R and S (Fig. 3). The division of the study area into three clusters and modeling groundwater
separately in three clusters would not have any effect on the final output as the pumping of the
tubewells in a given cluster has a very minor effect on the water level in the tubewells of other
clusters.

In each cluster, groundwater levels at the sites in the previous time step, pumping rates of the
tubewells, weekly total rainfall, weekly pan evaporation and weekly river stage were considered as
input parameters. In the third cluster, however, an additional input parameter weekly water level in
the drain was considered as it has potential to affect the groundwater level in this cluster only. Thus,
Cluster 1 had 17 input nodes and 7 output nodes, Cluster 2 had 13 input nodes and 5 output nodes
and Cluster 3 had 16 input nodes and 6 output nodes as shown in Table 2.
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Fig. 3: Division of the Study Area into Three Clusters for ANN Modeling

Table 2: Input and Output Parameters for the Three Clusters

Cluster Input Parameters Output Parameters
Cluster 1 | Initial groundwater levels at 7 sites (A, B, D, E, H, [ and J);| Groundwater levels at 7 sites
Average weekly pumping rates of 7 tubewells (A,B,D,E,H,IandJ) in the
(A, B, D, E, H, I and J); Weekly total rainfall; next time step (i.e., one week
Average weekly river stage; and Average weekly ahead)
pan evaporation
Total: 17 input parameters Total: 7 output parameters
Cluster 2 | Initial groundwater levels at 5 sites Groundwater levels at 5 sites
(C, F, G, K and L); Average weekly pumping rates of 5 (C,F, G, K and L) in the next
tubewells (C, F, G, K and L); Weekly total rainfall; time step (i.e. one week
Average weekly river stage; and Average weekly pan ahead)
evaporation
Total : 13 input parameters Total: 5 output parameters
Cluster 3 | Initial groundwater levels at 6 sites Groundwater levels at 6 sites

M, O, P, Q, R and S); Average weekly pumping rates of 6
tubewells (M, O, P, Q, R and S); Weekly total rainfall;
Average weekly river stage; Average weekly pan
evaporation; and Average weekly water level in the

main drain

Total: 16 input parameters

M, O, P, Q, R and S) in the
next time step (i.e. one week
ahead)

Total: 6 output parameters




4.4 Structure of the model

The structure of the neural network consisted of one hidden layer along with the input and output
layer. The optimal number of nodes in the hidden layer was optimized by trial and error and the
number of hidden nodes corresponding to the least root mean squared error (RMSE) and highest
Nash-Sutcliffe efficiency (NSE) was selected as optimal number of hidden neuron. The activation
function of the hidden layer and output layer was set as log-sigmoid transfer function as this proved
by trial and error to be the best among a set of other options. In this study, supervised type of learning
with a batch mode of data feeding was used for ANN modeling. Out of the 174 weeks datasets
available, 122 datasets were used for training the ANN models and 52 datasets were used for testing
the models. The ANN modeling was performed by using MATLAB 6.5 software.

The optimum number of hidden neurons for each cluster and the three algorithms determined by the
trial and error method are presented in Table 3. The optimum number of hidden neurons varied
from 10 to 40, and no uniform pattern of variation of optimum number of hidden neurons was
observed with respect to the clusters and the training algorithms. Figs. 4 (a to ¢) show the variation
of RMSE and model efficiency (NSE) with the number of nodes in hidden layer for three different
algorithms, respectively for Cluster 1. Similarly Figs. 5 (a to ¢) and Figs. 6 (a to ¢) show the
variation of RMSE and model efficiency with the number of nodes in hidden layer for three
algorithms for Cluster 2 and 3 respectively. The RMSE values are lowest and the model efficiency
values are highest in all the figures with respect to the optimum number of hidden neurons presented
in Table 3. Here also no uniform pattern of variation of RMSE and model efficiency was observed
across different clusters and training algorithms.

Table 3: Optimum Number of Hidden Neurons for the Three ANN Training Algorithms
Cluster GDX LM BR

Cluster 1 10 40 10
Cluster 2 30 20 20
Cluster 3 30 20 40
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4.5 Performance evaluation of the models

The performance evaluation of the three training algorithms was performed quantitatively
by using statistical indicators and qualitatively by comparing the predicted groundwater
levels with the observed groundwater levels. Four statistical indicators, i.e., mean error (ME),
root mean squared error (RMSE), correlation coefficient (r) and Nash-Sutcliffe efficiency
(NSE) were used to evaluate the effectiveness of three artificial neural network models
developed in this study. The ANN model which yielded the lowest mean error, lowest RMSE,
highest r and the highest NSE was selected for groundwater level forecasting in the study area.

The values of four statistical indicators of the three training algorithms for the three clusters
are shown in Tables 4(a to ¢), respectively during training and testing periods. These statistical
indicators have been obtained by taking the average of their values obtained at individual
sites in each cluster. It can be seen from Tables 4(a to c¢) that the performance of all the three
training algorithms is good during both training and testing periods, i.e., they are able to
forecast groundwater levels one week in advance with a reasonable accuracy in all the three
clusters. For the GDX training algorithm during testing period, the mean error values range
from 0.016 to 0.062 m, RMSE values from 0.372 to 0.424 m, correlation coefficient (r) values
from 0.9678 to 0.9756 and Nash-Sutcliffe efficiency (NSE) values from 0.9307 to 0.9388. For
the LM training algorithm during testing period, the mean error values range from 0.029 to
0.081 m, RMSE values from 0.376 to 0.424 m, r values from 0.9697 to 0.9815, and NSE values
from 0.9318 to 0.9380, whereas these figures for the BR algorithm are -0.003 m to 0.061 m,
0.318t00.390 m, 0.9721 t0 0.9793 and 0.9366 to 0.9518 respectively.

Table 4(a): Goodness-of-fit Statistics for the GDX, LM and BR Algorithms

for Cluster 1 (1-week Lead Time)
Algorithm ME (m) RMSE (m) r NSE

Training | Testing | Training| Testing | Training | Testing| Training | Testing
GDX -0.050 0.027 0.323 0.378 | 0.9739 | 0.9678 | 0.9460 | 0.9307
LM -0.006 0.060 0.218 0.376 | 0.9881 | 0.9697| 0.9743 | 0.9318
BR -0.019 0.061 0.203 0.365 | 09895 | 0.9721| 0.9785 | 0.9366

Table 4(b): Goodness-of-fit Statistics for the GDX, LM and BR Algorithms
for Cluster 2 (1-week Lead Time)

Algorithm ME (m) RMSE (m) r NSE
Training | Testing | Training| Testing | Training | Testing| Training | Testing
GDX 0.000 0.062 0.282 0.372 | 0.9766 | 0.9733 | 0.9536 | 0.9319
LM 0.003 0.029 0.127 0.378 | 09953 | 0.9772 | 0.9905 | 0.9321
BR 0.008 0.043 0.278 0.318 | 09773 | 0.9793| 0.9546 | 0.9518

Table 4 ( ¢ ): Goodness-of-fit Statistics for the GDX, LM and BR Algorithms

for Cluster 3 (1-week Lead Time)

Algorithm ME (m) RMSE (m) r NSE
Training | Testing | Training| Testing | Training | Testing| Training | Testing
GDX 0.004 0.016 0.413 0.424 | 0.9664 | 0.9756 | 0.9336 | 0.9388
LM 0.039 0.081 0.193 0.424 | 09935 | 0.9815| 0.9856 | 0.9380
BR 0.032 -0.003 | 0.401 0.390 | 09695 | 0.9785]| 0.9378 | 0.9503




It is apparent from the above-mentioned quantitative performance criteria (i.e., statistical
indicators) that all the three ANN training algorithms yield more or less same results, but the
Bayesian regularization (BR) algorithm performs slightly better than the remaining two
algorithms. It is followed by the Levenberg-Marquardt (LM) algorithm and the GDX
algorithm.

Apart from the statistical indicators, the performance of the three algorithms was evaluated
using visual checking of observed and calculated groundwater levels. Figs. 7(a to c¢) show the
comparison of predicted groundwater levels (one week ahead) by the three training
algorithms with the observed groundwater levels at three locations one each from the three
clusters, i.e., Baulakuda (Site A) from the first cluster, Dahigan (Site K) from the second
cluster and Chanduli (Site S) from the third cluster of the study area, respectively. These
figures indicate that there is a very good matching between observed and simulated
groundwater levels at the sites. Thus, based on the statistical indicators used in this study and
the graphical comparison, it can be inferred that although all the three algorithms yield more
or less similar results, the performance of the Bayesian regularization algorithm could be
considered superior based on the statistical indicators. The GDX algorithm was found to be
suitable for large neural networks with little less accuracy than the Levenberg-Marquardt
algorithm and the Bayesian regularization algorithm, respectively. In practice, however, any
of these three algorithms could be used for predicting groundwater levels one week advance
in the study area.
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4.6 Effect of clustering on ANN model performance

Moreover, the GDX algorithm was used to forecast groundwater level at 18 sites at a time as it
is suitable for large networks. Thereafter, performance of the GDX model, with and without
clustering was compared using above-mentioned statistical indicators in order to study the
effect of clustering on the accuracy of groundwater-level prediction. Table 5 shows the
comparison of statistical indicators of the GDX model, with and without clustering
respectively. It is evident that for the ‘without clustering’ model, the ME and RMSE values
are lower and the r and NSE values are higher than the corresponding values of these
statistical indicators for the ‘with clustering’ model during training period. However, it is
quite opposite during testing period in which the ME and RMSE values are higher and r and
NSE values are lower for the ‘without clustering’ model. It might be attributed to the
overfitting of the ‘without clustering’ ANN model due to larger neural networks. This finding
shows that the division of the study area into clusters improves the accuracy of model
prediction. Therefore, it is recommended that clustering approach should be used to handle
large number of inputs and sites in ANN modeling.

Table 5: Effect of Clustering on Goodness-of-fit Statistics for the GDX model

GDX ME (m) RMSE (m) r NSE
Algorithm| Training Testing | Training Testing | Training Testing | Training Testing

With
Clustering| -0.015 0.035 0.340 0.392 | 0.9723 | 0.9722 | 0.9444 | 0.9338

Without
Clustering| 0.002 0.061 0.240 0.412 0.9861 09715 | 0.9722 | 0.9288

S. Simultaneous Forecasting of Groundwater Levels

As Lavenberg- Marquardt and Bayesian regularization algorithms has a great
computational and memory requirement, the GDX algorithm was found suitable for
forecasting groundwater level in a large group of wells simultaneously in a river basin. Hence
this model was again used to simultaneously forecast groundwater level in 18 wells at a time.
The ANN architecture with lowest RMSE value, highest correlation coefficient and highest
Nash-Sutcliffe efficiency was considered to yield optimum number of hidden neurons, and it
was found to be 40 by trial and error method. Fig. 8 shows the variation of RMSE and NSE
with number of nodes in hidden layer during the testing of the model. During the training of
the model, the statistical indicators r, RMSE and NSE were 0.9861, 0.2397 m and 0.9722
respectively, whereas the corresponding parameters were 0.9715,0.4118 m and 0.9288 during
testing of the model. The values of the statistical indicators show that the performance of the
model is satisfactory during both training and testing period, and it is able to forecast
groundwater levels one week in advance with a reasonable accuracy.



Figs. 9(a) to (c) show the comparison of observed and predicted groundwater levels at three
sites, i.e., Dadhibamanpur (E) from the upstream side of the basin, Kulakalapada (L) towards
the middle of the basin and Kulasarichuan (R) from the downstream side of the basin. These
figures indicate that there is a very good matching between observed and predicted
groundwater levels at all the sites. Based on the model evaluation criteria (statistical
indicators) and the graphical comparison, it can be inferred that the developed ANN model
forecasts groundwater levels at multiple sites satisfactorily.
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6. Groundwater Level Forecasting at Different Lead Times

The best-fit ANN model of the study area was used for groundwater level forecasting at 2-, 3-
and 4-week in advance to examine the prediction accuracy of the model at different lead
times. The inputs to all these ANN models were kept the same as that for the model predicting
water level at 1 week in advance. The groundwater level forecasting at different lead times
was performed quantitatively by using statistical indicators and qualitatively by comparing
the predicted groundwater levels at different lead times.

The Bayesian regularization (BR) algorithm was used to forecast groundwater levels at 2-, 3-
and 4-week in advance in Cluster 1 as an example. The inputs to these ANN models were kept
the same as those for the ANN model predicting groundwater level at 1 week in advance. The
performance of the BR algorithm at different lead time forecasts during testing period is
shown in Table 6 in terms of ME, RMSE, r and NSE statistical indicators. As mentioned
earlier, the statistical indicators shown in this table are the average of their values for the 7
sites of Cluster 1. It can be seen from Table 6 that the ME value varies from 0.061 m for the 1-
week lead time forecast to 0.129 m for the 4-week lead time forecast, the value of RMSE varies
from 0.365 m for the 1-week lead time to 0.546 m for the 4-week lead time, the value of r varies
from 0.9721 for the 1-week lead time to 0.9389 for 4-week lead time, and the value of NSE
varies from 0.9366 for 1-week lead time to 0.8647 for 4-week lead time. It is interesting to note
that the performance of the 3-week lead time forecast model is slightly better than that of the
2-week lead time forecast model. The observed and simulated groundwater levels at different
lead time forecasts are shown in Figs. 10(a to c) for three sites, Baulakuda (Site A),
Dadhibamanpur (Site E) and Dhuleswar (Site J), respectively. These figures also indicate an
improved matching between observed and simulated groundwater levels for the smaller lead
times compared to large lead time. Thus, it can be inferred that the performance of the ANN
model generally decreases with an increase in the lead time. However, the groundwater-level
prediction for higher lead times (2 to 4 weeks) is also reasonably accurate in this study. On the
whole, it could be inferred that despite the data constraints in this study, the developed ANN
models predicted weekly groundwater levels over the river island reasonably well for 1-, 2-, 3-
and 4-week lead times.

Table 6: Goodness-of-fit Statistics for Different Lead Time Forecasts

Lead ME (m) RMSE (m) r NSE
Time | Training | Testing | Training | Testing | Training | Testing | Training | Testing

1 week | -0.019 0.061 0.203 0.365 | 0.9895 | 0.9721| 0.9785 | 0.9366

2 weeks | 0.001 0.084 0.361 0.492 | 0.9658 | 0.9469 | 0.9327 | 0.8866

3 weeks | -0.009 0.027 0.382 0.448 | 0.9617 | 0.9573 | 0.9245 | 0.9065

4 weeks | 0.066 0.129 0.395 0.546 | 0.9604 | 0.9389 | 0.9199 | 0.8647
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7. Conclusion

Artificial neural network models were developed for groundwater level forecasting in
Kathajodi-Surua Inter-basin within Mahanadi deltaic region of eastern India. Three ANN
training algorithms namely gradient descent with momentum and adaptive learning rate
backpropagation (GDX) algorithm, Levenberg-Marquardt (LM) algorithm and Bayesian
regularization (BR) algorithm were evaluated for predicting groundwater levels in the study
area. With the ANN model having 40 input nodes and 18 output nodes, the Levenberg-
Marquardt and Bayesian regularization algorithms consumed lots of computer memory and
were difficult to be evaluated by the trial-and-error method. In contrast, the GDX algorithm
could effectively be evaluated by the trial-and-error procedure due to less requirement of
computer memory. In order to run the LM and BR algorithms effectively, the entire study
area was divided into three clusters and three cluster-specific ANN models were developed
for predicting groundwater levels one week advance at the sites present in each cluster. The
performance evaluation of training algorithms based on ME, RMSE, r and NSE showed that
the BR algorithm performs somewhat better than the remaining two algorithms. On the
other hand, the GDX algorithm can effectively be used for large neural networks with little
less accuracy than the LM and BR algorithms. GDX algorithm was again successfully used to
simultaneously forecast groundwater level at all the 18 tubewells at a time. The forecast of
groundwater levels at 2-, 3- and 4-week in advance showed that though the accuracy of
predicted groundwater levels generally decreases with an increase in the lead time, the
predicted groundwater levels are reasonable for the larger lead times as well.
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