

कृषि-जल

जल प्रबंधन पर हिन्दी पत्रिका

अंक 5 संख्या 2 जुलाई-दिसम्बर 2018

प्रकाशक

डॉ. सुनील कुमार अम्बष्ट, निदेशक

प्रधान संपादक

डॉ. ओम प्रकाश वर्मा

संपादक

डॉ. मुकेश कुमार सिन्हा डॉ. प्रमोद कुमार पंडा डॉ. रचना दूबे कमलेश कुमार शर्मा

भाकृअनुप – भारतीय जल प्रबंधन संस्थान

(भारतीय कृषि अनुसंधान परिषद) भुवनेश्वर- 751023, ओडिशा

दूरभाष : 0674-2300060, फैक्स : 0674-2301651

वेब साइट : www.iiwm.res.in

इस अंक में

मछली पालन आधारित एकीकृत खेती पद्धति और खेत पर जल प्रबंधन: आदिवासी किसानों हेतु वरदान आर.के. मोहंती, ओ.पी. वर्मा, आर.के. पंडा, एस.के. राऊतराय, आर.आर. सेठी एवं एस.के. अम्बष्ट	01
पंजाब में टिकाऊ कृषि हेतु जल संसाधनों का प्रबंधन राजन अग्रवाल, समनप्रीत कौर, संजय सतपुते और अमीना रहेजा	06
नहरी कमांड क्षेत्र के तहत जल उत्पादकता में वृद्धि के विकल्प आर.के. पंडा, एस.के. राऊतराय, पी. पाणिग्राही, ओ.पी. वर्मा, एस.के. अम्बष्ट, एस. रायचौधुरी, ए.के. ठाकुर, आर.के. मोहंती, एम.के. सिन्हा एवं ए.के. सिंह	10
जल विज्ञान और जल की गुणवत्ता के मॉडल द्वारा शिवनाथ उप-बेसिन के समस्याग्रस्त जल ग्रहण क्षेत्रों के प्रबंधन हेतु सुझाव एम.पी. त्रिपाठी, गौरव कान्त निगम, धीरज खलखो एवं मंजू ध्रुव	15
नहर के अंतिम छोर पर सिंचाई जल की कम उपलब्धता की स्थिति में अरहर के साथ उड़द/धान की उन्नत खेती आर.सी. तिवारी, बी.एन. सिंह एवं वेद प्रकाश	18
मृदा आद्रता संवेदक का गुरुत्वाकर्षण प्रणाली के साथ निष्पादन एवं मूल्यांकन जीत राज, धीरज खलखो एवं महेंद्र प्रसाद त्रिपाठी	20
मोबाइल एप आधारित रिमोट संचालित पंप प्रणाली देवब्रत सेठी, ओ.पी. वर्मा और एस.के. अम्बष्ट	23
गन्ने की यंत्रीकृत खेती हेतु उप-सतही ड्रिप फर्टिगेशन प्रणाली	26
भाकृअनुप – भारतीय जल प्रबंधन संस्थान, भुवनेश्वर के वैज्ञानिकों ने गृह मंत्रालय, भारत सरकार द्वारा राजभाषा गौरव पुरस्कार (प्रथम) प्राप्त किया	29

संपादकीय

 \diamond

मानसून पर कृषि की निर्भरता जगजाहिर है। लेकिन देश में जल एवं खाद्य सुरक्षा को प्राप्त करने के लिये कृषि क्षेत्र पर बढ़ रहे दबाव के चलते अब समय की आवश्यकता है कि मानसून पर कृषि की निर्भरता न्यूनतम हो तथा जल के वैकल्पिक संसाधन सदैव उपलब्ध रहें और विषम जलवायु परिस्थितियों का कृषि पर प्रतिकूल प्रभाव भी कम से कम हो। यह केवल तभी मुमिकन हो सकता है जब जल सरंक्षण तथा विविध प्रकार के जल स्रोतों के पुन:भरण पर उचित रूप से ध्यान दिया जाये। इसी लक्ष्य के प्रति सजग रहकर भाकृअनुप-भारतीय जल प्रबंधन संस्थान, भुवनेश्वर द्वारा लगातार कार्य किया जा रहा है।

हमारी पत्रिका के इस अंक में देश की सिंचाई व्यवस्था के विभिन्न पहलुओं पर चर्चा की गयी है और मछली पालन आधारित एकीकृत खेती पद्धित और खेत पर जल प्रबंधन, टिकाऊ कृषि हेतु जल संसाधनों का प्रबंधन, नहरी कमांड क्षेत्र के तहत जल उत्पादकता में वृद्धि के विकल्प, समस्याग्रस्त जल ग्रहण क्षेत्रों के प्रबंधन हेतु सुझाव, नहर के अंतिम छोर पर सिंचाई जल की कम उपलब्धता की स्थिति में अरहर के साथ उड़द/धान की उन्नत खेती, मृदा आद्रता संवेदक का गुरुत्वाकर्षण प्रणाली के साथ निष्पादन एवं मूल्यांकन, मोबाइल एप आधारित रिमोट संचालित पंप प्रणाली जैसे महत्त्वपूर्ण विषयों को महत्त्व दिया गया है। इस पत्रिका में आधुनिक कृषि की तकनीक को अपनाकर एक सफल किसान बनने की यात्रा को 'सफलता की गाथा' नामक शीर्षक से प्रस्तुत किया गया है।

हमें आशा है कि यह पत्रिका अपने उद्देश्य में सफल होगी तथा पाठकों को 'कृषि जल प्रबंधन' संबंधी अद्यतन जानकारी उपलब्ध करवाने में सहायक सिद्ध होगी। पत्रिका में प्रकाशित आलेख एवं सामग्री लेखकों की अपनी है। तथा संपादकों का इससे सहमत होना आवश्यक नहीं है।

हम पत्रिका के प्रकाशन में सार्थक सहयोग प्रदान करने वाले सभी सहयोगियों के आभारी हैं।

संपादक

जातीय अल्पसंख्यक (उप जनजाति) समुदाय, जिन्हें आमतौर पर 'आदिवासी' के रूप में जाना जाता है जो भारतीय आबादी के सबसे अधिक गरीबी वाले क्षेत्रों में रहते हैं और ये भारत की सांस्कृतिक विरासत के निर्माण में महत्वपूर्ण भूमिका निभाते हैं। वे देश के भौगोलिक क्षेत्र के लगभग पंद्रह प्रतिशत भाग में रहते हैं और पीढी दर पीढी आदिवासी लोगों ने कृषि और पशुधन, मछली पालन और शिकार के द्वारा एक विविध आजीविका रणनीति का अभ्यास करते हैं। मुख्यधारा की आबादी के विपरीत, वे मूल रूप से प्राकृतिक संसाधनों की आसानी से पहुँच के लिये कम आबादी वाले क्षेत्रों में निवास करते हैं। एक मजबूत सामुदायिक नेतृत्व प्रणाली और सामाजिक ससंगति के उच्च स्तर के बावजूद सामाजिक, आर्थिक और पारिस्थितिकी कारकों के संयोजन के कारण इनकी आजीविका आज भी खतरे में है। इस समुदाय की भूमि जोत बहुत छोटी और खंडित होती है जबकि अधिक संख्या में यह लोग भूमिहीन हैं यानि इनके पास कृषि योग्य भूमि उपलब्ध नहीं हैं। भूमिहीन होने के कारण यह लोग अकुशल कार्य जैसे कृषि मजदूरी या मौसमी प्रवास के रूप में काम करना ही इनके कुछ उपलब्ध आजीविका विकल्प हैं जिनसे वे अपनी जीविका का पालन करते हैं। जैसा कि पारंपरिक आजीविका का क्षरण हो रहा है और बहुत अधिक लोग गरीबी के दुष्चक्र में फंस गए हैं जो प्रकृति में बहुआयामी है। इस प्रकार, इन आदिवासी समुदायों की संवेदनशीलता एवं गरीबी को कम करने और इनकी आजीविका के लचीलेपन को बढ़ाने की दिशा में उपयुक्त वैकल्पिक विकल्पों की पहचान करना और प्रावधान उपलब्ध करवाना बहुत ही महत्वपूर्ण प्रयास साबित हो सकता है।

ग्रामीण आजीविका के विविधीकरण हेतु मछलीपालन का महत्त्व दिन-प्रतिदिन बहुत ही बढ़ता जा रहा है। प्रदर्शन और अनुसंधान के साक्ष्यों से पता चलता है कि छोटे पैमाने पर मछलीपालन या मछलीपालन आधारित एकीकृत कृषि प्रणाली (IFS) को सामाजिक, आर्थिक और पर्यावरणीय पहलुओं के साथ उचित विचार करके बढ़ावा दिया गया है और आजीविका परिसंपत्तियों और जोखिम प्रबंधन को साझा समझ के भीतर बनाया

मछली पालन आधारित एकीकृत खेती पद्धति और खेत पर जल प्रबंधन: आदिवासी किसानों हेतु वरदान

आर.के. मोहंती, ओ.पी. वर्मा, आर.के. पंडा, एस.के. राऊतराय, आर.आर. सेठी एवं एस.के. अम्बष्ट

भाकृअनुप- भारतीय जल प्रबंधन संस्थान, भुवनेश्वर, ओडिशा

गया है जिससे गरीब, कमजोर आदिवासी एवं अल्पसंख्यक जाति के लोगों की आजीविका में काफी सुधार प्राप्त हो सकता है। इसके अलावा, पारंपरिक दृष्टिकोण के साथ-साथ नई तकनीकों को बढावा, बुनियादी ढाँचे का विकास, जल संसाधनों का निर्माण, जल प्रबंधन और लक्षित विस्तार सेवाओं के प्रावधान पर जोर देने से न केवल अत्यंत गरीब आदिवासी समुदायों को लाभ होता है बल्कि उनकी क्षमताओं, जीवन यापन, आय और संपत्ति के साधन भी मजबूत होते हैं। विविधतापूर्ण आजीविका रणनीति के रूप में जब मछलीपालन को खेत पर जल प्रबंधन के साथ एकीकत कृषि प्रणाली का एक भाग बनाया जाता है तो यह पारिस्थितिकीय कृषि को बढावा देता है जिससे इस पद्धित से अधिकतम लाभ उठाया जा सकता है और अन्य हानिकारक प्रभावों से बचा जा सकता है। इसके अलावा उपलब्ध ऊर्जा और सामग्रियों का उपयोग करके कृषि से अधिक से अधिक उत्पादन प्राप्त करने के लिये समग्र प्रयास किए जा सकते हैं।

उपज, जल उत्पादकता और लाभ के संदर्भ में भी मछलीपालन आधारित एकीकृत खेती की तकनीक बहुत ही अच्छी साबित हो सकती है। इन सब महत्त्वपूर्ण बातों को ध्यान में रखते हुये भाकृअनुप – भारतीय जल प्रबंधन संस्थान, भुवनेश्वर द्वारा वर्ष 2013-14 से जनजाति उप योजना (TSP) के माध्यम से ओडिशा राज्य के सुंदरगढ़ जिले के बिरजाबर्ना गाँव में आदिवासी समुदाय की उत्पादकता, लाभप्रदता और सामाजिक-आर्थिक विकास पर जल

संसाधनों के निर्माण और इनके उपयोग तथा प्रबंधन के प्रभाव का अध्ययन करने के लिये संदर्भित अध्ययन आयोजित किया गया।

अध्ययन स्थल

ओडिशा राज्य के सुंदरगढ जिले में बिरजाबर्ना एक आदिवासी बाहल्य गाँव है जहाँ 77% अनुसूचित उप जन जाति की आबादी वाले 50 किसान परिवार रहते हैं। यह 1535 हेक्टेयर के कुल भौगोलिक क्षेत्र के साथ एक दूर स्थित गाँव (अक्षांश 22°01'51.27" और देशांतर 84°07'25.15") है। जहाँ, 1200 मिमी वार्षिक वर्षा (जिसमें से 80% मानसून अवधि के दौरान) होती है। यह गाँव घुरलीजोर माइनर सिंचाई परियोजना की मौजूदगी के बावजूद, मानसून के बाद और गर्मियों के मौसम में सुनिश्चित सिंचाई सुविधा से रहित रहता है। मानसून और मानसून के बाद के मौसम के दौरान इस माइनर सिंचाई परियोजना का कुल डिजाइण्ड कमांड क्षेत्र में क्रमश: 364 हेक्टेयर और 210 हेक्टेयर है जिसमें 3.5 किलोमीटर की दूरी के अंतर्गत नहर से जुड़े पांच अनियमित आकार के सहायक तालाब हैं। इसका कारण मुख्य रूप से सुनिश्चित सिंचाई और जलीय कृषि के लिए कोई भी उचित जल भंडारण की सुविधा ना होना था। इसलिए, किसान पूरे वर्ष भर में किसान केवल खरीफ धान की फसल पर ही निर्भर रहते हैं और यहाँ वर्ष 2013 तक धान की पैदावार 2.5 टन/हेक्टेयर से भी कम थी। इस प्रकार की कृषि की स्थिति वहाँ आदिवासी किसानों की आजीविका के लिए पर्याप्त नहीं है। अत: इस गंभीर परिस्थिति को देखते हुए भाकुअनुप – भारतीय जल प्रबंधन संस्थान,

भुवनेश्वर के वैज्ञानिकों द्वारा सबसे पहले इस क्षेत्र की प्रमुख समस्याओं की पहचान की गई जो इस प्रकार थी (1) सुनिश्चित सिंचाई और जल की उपलब्धता की कमी (2) मछलीपालन के लिए फिंगर्लिंग्स की समय पर उपलब्धता और (3) तकनीकी ज्ञान और जागरूकता की कमी इत्यादि।

जनजातीय उप योजना (TSP) के माध्यम से वैज्ञानिक तकनीकें

ग्रामीण विकास का मूल आधार स्थानीय क्षेत्रों में उपलब्ध संसाधनों का उत्पादक उपयोग करना होता है। गाँवों में उपलब्ध तालाब और टैंक अक्सर तकनीकी ज्ञान की कमी, निवेश और बनियादी ढाँचे की कमी, आदानों का समर्थन, विपणन प्रणाली इत्यादि जैसे विभिन्न कारणों के कारण अनुपयुक्त रहते हैं। अधिकांश गाँवों में उपलब्ध जल संसाधनों पर स्वामित्व ग्राम समुदायों या स्वयं सहायता समूहों या पंचायत का होता है। इन सामुदायिक जल संसाधनों को ग्राम समुदायों द्वारा नियंत्रित और प्रबंधित किया जाता है और प्राप्त लाभ को समुदाय के सदस्यों के बीच साझा कर लिया जाता है। इन संसाधनों पर किए गए तकनीकी प्रदर्शन को समुदायों के सदस्यों के बीच कथित लाभ के अभाव में बनाए रखना बहुत ही मुश्किल है। इसलिए, ग्राम समुदायों का निरंतर ध्यान आकर्षित करने के लिए अधिक स्तर के लाभों को उत्पन्न करना आवश्यक था जिसको केवल कृषि-मछलीपालन प्रणाली में सभी उपलब्ध संसाधनों और अवसरों के समुचित उपयोग द्वारा ही प्राप्त किया जा सकता है। मछलीपालन के लिए बड़े और छोटे जल निकायों का उपयोग करना और इन्हीं जल संसाधनों को बहुआयामी उपयोग में लेना ही एक व्यवहार्य रणनीति थी जिसके तहत इलाके के सभी उपलब्ध जल निकायों का उचित उपयोग किया गया।

इस गरीब पिछड़े क्षेत्र में भाकृअनुप – भारतीय जल प्रबंधन संस्थान के वैज्ञानिकों द्वारा विभिन्न जल संरक्षण और प्रबंधन रणनीतियों को कार्यान्वित किया गया। जल बहाव नियंत्रण तकनीकें जैसे इनलेट, आउटलेट और अधिशेष एस्केप संरचनाओं के प्रावधानों को नहर के अंतिम छोर पर नहर से जुड़े सहायक तालाबों में इनकी वहन क्षमता को बढ़ाने के लिए डिजाइन और विकसित किया गया। गर्मी के मौसम के दौरान टैंक में जल की औसत गहराई केवल 1.3 मीटर थी जबिक जल बहाव नियंत्रण संरचनाओं के निर्माण के बाद इस टैंक की गहराई 2.5 मीटर तक बढ़ गई। इसलिए, टैंक में पानी की उपलब्धता में 120% (1.2 हेक्टेयर) तक की वृद्धि हो गई जिससे मछलीपालन के साथ-साथ कमांड क्षेत्र में 30% की वृद्धि हुई। इस नहरी कमांड क्षेत्र के आस-पास के पाँच तालाबों में भी पानी का स्तर बढ़ गया और वहाँ कुंए खोदे गए। इसके अलावा, जल निकासी लाइन के किनारे एक कुंआ (4.8 मीटर व्यास और 9 मीटर

अनुसंधान स्थल

सरप्लस एस्केप सरंचना

सहायक तालाब से मछली पकड़ना

इन सभी महत्त्वपूर्ण तकनीकी हस्तक्षेपों ने वर्ष 2015-16 के दौरान कई फसलों को उगाने में संसाधन गरीब आदिवासी किसानों के बीच विश्वास पैदा किया ताकि उनके जीवन स्तर में सुधार हो सके। जल बहाव पैटर्न के संदर्भ में विनियमन तकनीकों का प्रभाव; नहर से जुड़े सहायक तालाब में गहराई) खोदा गया जो सहायक तालाब के निकट था। इस तकनीक के हस्तक्षेप ने वहाँ 1.8 हेक्टेयर मीटर के रूप में अतिरिक्त पानी की उपलब्धता बढ़ाई जिसके फलस्वरूप अतिरिक्त कमांड क्षेत्र में 2.1 हेक्टेयर तक वृद्धि हुई। इसके अलावा, इस खोदे गए कुंए से जल की आपूर्ति को भूमिगत पाइपलाइन के साथ स्प्रिंकलर सिंचाई प्रणाली जोड़ा गया जिससे वहाँ पर उगाई जाने फसलों की सिंचाई भी संभव हो पाई। इन सभी वज्ञानिक पद्धितयों की नीचे दिए

सहायक तालाब हेतु इनलेट सरंचना

मूँगफली की फसल में फव्वारा सिंचाई पद्धति से सिंचाई

जल उत्पादकता में वृद्धि हेतु किसान प्रशिक्षण कार्यक्रम

अस्थायी जल की उपलब्धता और खोदे गए कुंए की हाइड्रोलिक्स का अध्ययन क्षेत्र के आदिवासी किसानों के खेतों में निरंतर फसल कैलेंडर और मत्स्यपालन को विकसित करने के उद्देश्य से किया गया। इस कमांड क्षेत्र के अंतर्गत खरीफ में एकल धान की फसल की जगह खरीफ के मौसम के दौरान धान के फसल क्रम में रबी मौसम की सरसों, और गर्मी के मौसम में मूँगफली व मूँग को वर्ष 2015-16 के दौरान किसानों द्वारा उगाने की कोशिश की गई। सहायक तालाब और आस-पास के छोटे तालाबों में मछली पालन के साथ-साथ कई अन्य तकनीकों जैसे कि टैंक-सह-कुंआ पद्धति (रबी और गर्मी के मौसम में सुनिश्चित सिंचाई सुविधा के कारण फसलों के तहत अधिक क्षेत्र को बढ़ाने के लिए एक सफल तकनीक), ऊँची-नीची क्यारी प्रणाली, युग्मित पंक्ति रोपण (कुंड सिंचाई) प्रणाली, पाइप सिंचाई प्रणाली (स्रोत तालाब से कृषि खेत में जल की बचत का विकल्प) को अपनाने का सझाव भी दिया गया।

फसलों की उपज और जल उत्पादकता पर प्रभाव

वर्ष 2015-16 से कुंए के साथ सहायक तालाब (कुल कमांड क्षेत्र 2.1 हेक्टेयर, जिसमें से 1.1 हेक्टेयर कुंए का कमांड क्षेत्र और 1.0 हेक्टेयर सहायक तालाब का कमांड क्षेत्र) का प्रभाव अध्ययन मानसून और मानसन के बाद की अवधि के लिए किया गया। सिंचाई की बुनियादी सुविधाओं के निर्माण के कारण कमांड क्षेत्र में तकनीक के हस्तक्षेप से पहले उगाई जा रही धान-परती फसल पद्धति की जगह मानसून के मौसम में धान तथा गर्मियों के मौसम में मूँगफली और मूँग जैसी फसलों को उगाया गया। इस अध्ययन के तहत धान (किस्म-ललाट) की उपज 0.35 किग्रा/घनमीटर की जल उत्पादकता के साथ 3.7 टन/हेक्टेयर प्राप्त हुई, जबिक अध्ययन स्थल के आस-पास के गैर-हस्तक्षेप वाले क्षेत्रों में इसी किस्म के धान की उपज 2.8 टन/हेक्टेयर प्राप्त हुई थी और 0.26 किग्रा/घनमीटर की जल उत्पादकता ही प्राप्त होती थी।

इसी प्रकार, रबी मौसम के दौरान सरसों की फसल (किस्म-पार्वती) से 0.42 किलोग्राम/ घनमीटर की जल उत्पादकता के साथ 1.25 टन/हेक्टेयर की पैदावार प्राप्त हुई। इसके अलावा, मूँगफली की फसल में कुंए और पाइप लाइन के साथ स्प्रिंकलर सिंचाई की शुरूआत से 31% कम जल के उपयोग के साथ 27% अधिक पैदावार पैदा प्राप्त हुई, जिसके परिणामस्वरूप चेक बेसिन सिंचाई विधि (क्रमशः 1.31टन/हे, 0.32 किग्रा/घनमीटर) की तुलना में 84% अधिक जल की उत्पादकता प्राप्त होती है। इसी तरह, मूँगफली की फसल में युग्मित पंक्ति कुंड सिंचाई प्रणाली ने चेक बेसिन सिंचाई की तुलना में 15% सिंचाई जल की बचत के कारण 15% अधिक उपज एवं 36% अधिक जल उत्पादकता प्राप्त हुई (तालिका 1)।

मूँग की फसल में बेसिन सिंचाई की तुलना में स्प्रिंकलर सिंचाई के तहत 33% कम जल के उपयोग के साथ 25% की उपज में वृद्धि प्राप्त हुई (तालिका 1)। स्प्रिंकलर सिंचाई के तहत मूँगफली और मूँग की फसलों में कम जल के प्रयोग के साथ अधिक पैदावार प्राप्त करने को युग्मित पंक्ति और चेक बेसिन सिंचाई की तुलना में स्प्रिंकलर सिंचाई पद्धित के तहत जल के समान वितरण और बेहतर प्रयोग दक्षता की एकरूपता को जिम्मेदार ठहराया जा सकता है।

तालिका 1. अनुसंधान अवधि के दौरान फसलों की उपज एवं जल उत्पादकता

फसल अवधि	फसलें	सिंचाई प्रणाली	फसल क्षेत्र (हे)	सिंचाईयों की संख्या	जल उपयोग/प्रयोग (मिमी)	उपज (टन/हे)	जल उत्पादकता (किग्रा/ घनमीटर)
खरीफ	धान (ललाट)	बाढ़ विधि	2.1	- 4	1044* 300**	3.7	0.35
	धान (ललाट)	बिना कोई पूरक सिंचाई	2.0	0	1044	2.8	0.26
रबी	सरसों (पार्वती)	बाढ़ विधि	1.1	1	300	1.25	0.42
जायद	मूँगफली (स्मृति)	युग्मित पंक्ति (कुंड विधि)	1.1	1	330	1.39	0.42
		क्यारी विधि	0.3	4	406	1.26	0.31
		स्प्रिंकलर	0.5	7	280	1.60	0.57
	मूँग (K 851	क्यारी विधि	0.6	2	180	0.73	0.41
	मूँग (K 851	स्प्रिंकलर	0.6	4	120	0.91	0.75

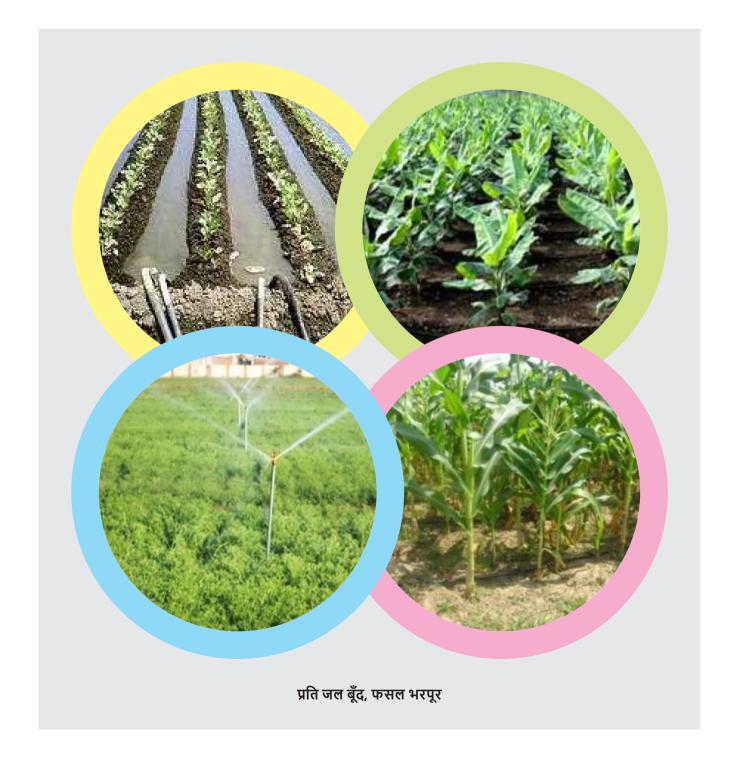
*वर्षा एवं पूरक सिंचाई, **कुंआ एवं सहायक तालाब

सहायक तालाब में मछलीपालन से ₹ 72,000/ हेक्टेयर की शुद्ध आय प्राप्त हुई। इस अनुसंधान स्थल पर केवल एकल धान की फसल से प्राप्त 1.29 के लाभ:लागत अनुपात के साथ औसत वार्षिक शुद्ध लाभ ₹17,000/हेक्टेयर (तकनीक के हस्तक्षेप से पहले) में जल संसाधन विकास की तकनीकों एवं मछलीपालन के साथ-साथ धान-सरसों-मूँगफली फसल क्रम की प्रबंधन विधियों से 1.94 के लाभ लागत अनुपात के साथ शुद्ध में ₹ 1,78,626/हेक्टेयर (तकनीक के हस्तक्षेप के बाद की अविध) तक की वृद्धि हुई। इसके अलावा, एकल धान की फसल की खेती की तुलना में इन उन्नत कृषि जल प्रबंधन की तकनीकों के तहत सकल जल

उत्पादकता और शुद्ध जल उत्पादकता में क्रमशः 160 और 360% की वृद्धि प्राप्त हुई (तालिका 2)। भाकृअनुप – भारतीय जल प्रबंधन संस्थान, भुवनेश्वर के वैज्ञानिकों द्वारा आदिवासी किसानों हेतु कई प्रशिक्षण और जागरूकता कार्यक्रमों को आयोजित करने के बाद और इस क्षेत्र में संस्थान द्वारा क्रियान्वित की गई उन्नत कृषि जल प्रबंधन की तकनीकों की सफलता को देखते हुए अब कई किसानों ने इन तकनीकों को पहले ही अपना लिया है जो इस प्रकार हैं पाइप लाइन और स्प्रिंकलर पद्धति (24 किसान), केंचुआ खाद यूनिट (छह किसान), मशरूम की खेती (दो महिला किसान) और घर के पिछवाडे में मुर्गी पालन (चार किसान) आदि।

तालिका 2. फसल उत्पादन एवं आर्थिक जल उत्पादकता की आर्थिकी

फसलें	सकल आय (₹/हे	सकल लागत (₹/हे)	शुद्ध आय (₹/हे)	लाभ:लागत अनुपात	सकल जल उत्पादकता (₹/घनमीटर)	शुद्ध जल उत्पादकता (₹/घनमीटर)
धान	54700	42750	11950	1.28	5.24	1.14
सरसों	41288	23500	17788	1.76	13.26	5.93
मूँगफली	65713	43225	24488	1.52	23.47	8.03
मूँग	36381	26700	9681	1.36	20.21	5.38
धान-सरसों-मूँगफली + मछलीपालन	368101	189475	178626	1.94	14.95	6.43
धान-सरसों- मूँग + मछलीपालन	338769	172950	165819	1.96	14.13	5.76
अनुसंधान क्षेत्र के पास भूमि में धान (बिना पूरक सिंचाई के)	51500	34500	17000	1.49	5.77	1.39

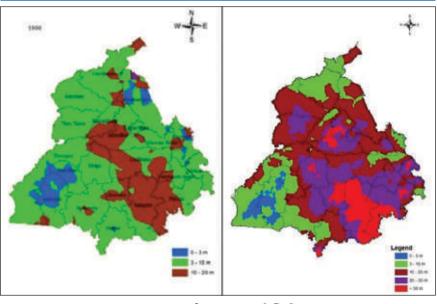

भाकृ अनुप- भारतीय जल प्रबंधन संस्थान, भुवनेश्वर के निदेशक, डॉ. सुनील कुमार अम्बष्ट, ओडिशा राज्य के सुंदरगढ़ जिले में चल रही जनजातीय उप योजना के अनुसंधान क्षेत्र का मूल्यांकन करते हुए

निष्कर्ष

इस अनुसंधान से यह निष्कर्ष निकला कि नहर से जुड़े सहायक तालाब में डिजाइन और निर्मित की गई इनलेट और आउटलेट जैसी जल बहाव को नियंत्रित करने वाली सुविधाओं ने नहर के जल के अनियमित बहाव को नियंत्रित करने में बहुत ही सकारात्मक प्रभाव डाला। जल के बहाव को नियंत्रित करने वाली सुविधाओं के निर्माण के कारण सहायक तालाब में संग्रहीत जल ने तालाब में मछलीपालन की सुविधा उपलब्ध करवाई जो खेती में एक बहुत ही लाभदायक विकल्प पाया गया। इसके अलावा, कुंआ खोदने तथा सहायक तालाब के जल के साथ कुंए के जल का संयोजी उपयोग दबाव सिंचाई सिंचाई पद्धित के माध्यम से करने से न केवल वर्ष भर एक से अधिक फसलों को उगाने में मदद मिली बल्कि पूरक सिंचाई के माध्यम से खरीफ धान की पैदावार में भी सुधार प्राप्त हुआ। कुल मिलाकर, यह अध्ययन दर्शाता है कि वर्षा जल के सरंक्षण और कुशल साधनों के माध्यम से भूजल के साथ इसके संयोजी उपयोग ने न केवल एकल धान फसल पद्धित वाले क्षेत्रों को उत्पादक फसल अनुक्रम वाले क्षेत्रों में परिवर्तित कर दिया, बल्कि खेती से अधिक कृषि आय की सुविधा उपलब्ध करवाई जिससे ओडिशा राज्य के इस उपजाऊ पठारी क्षेत्र में मछलीपालन के माध्यम से कृषि से अधिक आय प्राप्त हुई।

इस जनजातीय उप परियोजना के माध्यम से कृषि-जलीय कृषि/एकीकृत कृषि पद्धति और इनसे संबंधित आजीविका हस्तक्षेपों को बढ़ावा देने के कारण ओडिशा राज्य के सुंदरगढ़ जिले में गरीब वर्ग के आदिवासी समुदायों की खाद्य और पोषण सुरक्षा के साथ-साथ उनकी संवर्धित घरेलू आय, बढ़ी हुई आजीविका परिसंपत्तियों और सामाजिक पूंजी के निर्माण में सुधार प्राप्त हुआ। इस प्रकार, उनके रहन-सहन का

स्तर भी ऊंचा उठा जिसके आज वे सभी अपने आप में समृद्धशाली किसानों के रूप में उभर सामने आ रहे हैं। इस अध्ययन क्षेत्र के भीतर या इसके समान अन्य कृषि-जलवायु वाले क्षेत्र या क्षेत्रों में भी बड़े पैमाने पर किसानों द्वारा इस प्रकार की लाभदायक खेती करने और अपनी आजीविका में सुधार करने हेतु इन सभी महत्त्वपूर्ण वैज्ञानिक विकल्पों को दोहराया जा सकता है।


हमारे देश में उपलब्ध कल जल संसाधनों की 85% से अधिक खपत कृषि के क्षेत्र में होती है। और इसमें से हम भुजल द्वारा ही फसलों की 72% से अधिक सिंचाई की माँग को पूरा करते हैं जिससे देश में उपलब्ध भूजल संसाधनों पर बहुत अधिक दबाव पड रहा है। इन भूजल संसाधनों में आ रही गिरावट के मुख्य कारण हर साल नलकुपों की संख्या में वृद्धि, वर्षा की असमान प्रवृत्ति, प्रचलित पद्धति. बढती जनसंख्या. फसल औद्योगीकरण, शहरीकरण आदि हैं। अत: इस गंभीर समस्या पर काबु पाने के लिए कृषि में जल का विवेकपूर्ण तरीके से उपयोग करने का हमारा कर्तव्य बन जाता है। यह तभी संभव है जब कृषि के लिए भूजल एवं सतही जल संसाधनों का उचित रूप से दक्ष प्रबंधन किया जाए। एक अध्ययन के अनुसार, पंजाब राज्य में वर्ष 1998 से लेकर वर्ष 2017 तक भूजल के दोहन में 28% तक की वृद्धि हुई है। पंजाब कृषि विश्व विद्यालय, लुधियाना के अभियांत्रिकी विभाग द्वारा जीआईएस तकनीक का उपयोग कर भूजल स्तर के नक्शे तैयार किए गए जिससे पता चला कि पंजाब राज्य में वर्ष 1998 के दौरान औसत भूजल स्तर की गहराई 7.33 मीटर थी और जो वर्ष 2017 में 16.8 मीटर तक पहुँच गई। इस प्रकार, भूजल स्तर के मानचित्र से 50 सेमी/वर्ष की औसत गिरावट का संकेत मिलता है जिसको नीचे दिए गए चित्र में दर्शाया गया है।

पंजाब में टिकाऊ कृषि हेतु जल संसाधनों का प्रबंधन

राजन अग्रवाल, समनप्रीत कौर, संजय सतपुते और अमीना रहेजा

पंजाब कृषि विश्व विद्यालय, लुधियाना

पंजाब राज्य में भूजल स्तर की स्थिति

लेजर लैवलर द्वारा खेतों का समतलन

पंजाब कृषि विश्वविद्यालय, लुधियाना पिछले कई सालों से इस गंभीर समस्या पर काम कर रहा है और इसके लिए ऐसी कई तकनीकों को विकसित भी किया गया है जो भूजल रिक्तीकरण को कम कर सकती हैं। ऐसी ही कुछ महत्वपूर्ण तकनीकों की चर्चा नीचे की जा रही है:

लेजर लैवलर द्वारा खेतों का समतलन

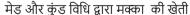
इस तकनीक द्वारा किसान अपने खेतों को कृषि के लिए अच्छी तरह से समतल करके एक उपयुक्त ढ़लान दे सकते हैं। ऐसा करने से पूरे खेत में एक समान जल का वितरण होगा जिससे सिंचाई के जल में 25 प्रतिशत तक की बचत हो सकती है। एक एकड़ खेत को लेजर लैवलर द्वारा 1 से 2 घंटे में अच्छी तरह से समतल किया जा सकता है। सामान्य तौर पर इसकी लागत ₹ 500-700 /घंटे आती है। इस तरह थोड़ा सा खर्चा करके किसान सिंचाई जल के उपयोग में बहुत ज्यादा बचत कर सकते हैं। इसके अलावा इस तकनीक से खेत में खरपतवारों की वृद्धि में कमी के साथ-साथ फसलों की पैदावार में भी 10-20 प्रतिशत तक का इजाफा होता है।

धान की खेती में सिंचाई जल की बचत

आमतौर पर पंजाब में धान की रोपाई को 20 जून के बाद करने की सलाह दी गयी है जिससे सिंचाई जल की काफी बचत होती है। धान को उगाने के पश्चात खेतों में 30 दिन के बजाय 15 दिन तक जल भराव रखने की सिफारिश भी दी गई है। और उसके बाद खेतों को पूरी तरह से सूखने नहीं देना चाहिए। ऐसा करने से भी सिंचाई जल में

काफी बचत प्राप्त होती है। इसके अलावा, धान के खेतों में डाइक की ऊँचाई को बढ़ाकर वर्षा के जल को संग्रहीत या सरंक्षित किया जा सकता है। यहाँ किसानों को यह भी सुझाव दिया गया कि अधिकतम वर्षा जल के संरक्षण के लिये धान के खेतों में इष्टतम एवं प्रभावी मेड़ की ऊँचाई क्रमश: हल्की, मध्यम और भारी मृदाओं के लिए 15, 17.5 और 22.5 सेंटीमीटर तक होनी चाहिए जैसाकिनीचेदिएगएचित्रमेंदिखायागयाहै।

इष्टतम बंड की ऊँचाई द्वारा धान के खेतों में वर्षा जल संरक्षण


लघु अवधि वाली धान की किस्मों का उपयोग

धान की बुआई हेतु लंबी अवधि की किस्मों के उपयोग से इस फंसल की सिंचाई जल की आवश्यकता में बहुत वृद्धि हुई है। अत: किसानों को कम अवधि की किस्मों और बेहतर गुणवत्ता वाली बासमती धान की ऐसी किस्मों को उगाना चाहिए जिनको सिंचाई जल की कम आवश्यकता पड़ती है। धान की अन्य किस्मों की तुलना में छोटी अवधि की किस्में जैसे पीआर-126 (93 दिन) पीआर-121 (110 दिन), पीआर 122 (117 दिन) और पीआर 114 (112 दिन) आदि करीब 15-20 दिन पहले ही परिपक्त हो जाती हैं। इन किस्मों के लिये नर्सरी को मई के आखिरी सप्ताह में लगाया जाता है और उसके बाद पौध की रोपाई जून के आखिरी सप्ताह में की जा सकती है। इस तरह वाष्पीकरण-काल की अवधि को कुछ हद तक कम किया जा सकता है। इसके अलावा, सीधे बीज बुआई वाले धान की किस्म पीआर 115 भी बहुत लोकप्रिय है।

कुंड (Furrow) सिंचाई विधि

अधिक दूरी पर उगाई जाने वाली फसलों जैसे कपास, मक्का, सूरजमुखी आदि को ऊँची क्यारियों पर उगाया जाना चाहिए और इनकी सिंचाई कुंडो (furrows) में करनी चाहिए। किसानों द्वारा इस विधि को अपनाकर बाढ़ सिंचाई विधि की तुलना में 20-25 प्रतिशत तक सिंचाई जल को बचाया जा सकता है और फसलों की उपज में काफी वृद्धि भी हो सकती है। मेड़ व कुंड विधि से एवं समतल क्यारी में मक्का की खेती को नीचे दिए गए चित्र में दर्शाया गया है।

समतल क्यारियों में मक्का की खेती

फव्वारा (छिडकाव) सिंचाई प्रणाली

यह प्रणाली असमतल भूमि, रेतीली मृदा या चिकनी मृदा पर कम दूरी वाली फसलों को उगाने के लिए उपयुक्त है। इस सिंचाई प्रणाली से जल के प्रयोग की दर को कृषि भमि की स्थिति के हिसाब से नियंत्रित किया जा सकता है। फसलों की उपज में वृद्धि एवं सिंचाई जल की बचत के हिसाब से बाढ सिंचाई विधि की तुलना में फव्वारा सिंचाई प्रणाली 1.5 गुना अधिक कुशल साबित होती है। गेहँ की फसल में फव्वारा सिंचाई प्रणाली के उपयोग को नीचे चित्र में बताया गया है।

डिप सिंचाई प्रणाली

यह प्रणाली असमतल भूमि, रेतीली मृदा या चिकनी मृदा पर अधिक दूरी पर उगाई जाने वाली अधिक मूल्य वाली फसलों जैसे फलदार फसलें, सब्जियाँ और फूलों के लिए बहुत ही उपयुक्त है (तालिका 3)। इस प्रणाली का एक अन्य लाभ यह भी है कि इसमें यूरिया जैसे घुलनशील उर्वरकों को सिंचाई जल के साथ ही प्रयोग किया जा सकता है और इस तरह फसलों को पूरे मौसम के दौरान एक समान पोषक तत्वों की उपलब्धता प्राप्त होती रहती है। यह प्रणाली बाढ़ सिंचाई विधि की तुलना में 3 गुना अधिक कुशल साबित हुई है। जहाँ भूजल की गुणवत्ता खराब हो या नहर के जल का (टैंक में संग्रहित कर) संयोजी उपयोग करना हो तो वहाँ भी इस प्रणाली का इस्तेमाल बहुत अच्छी तरह से किया जा सकता है।

ड़िप सिंचाई द्वारा युग्मित पंक्तियों में फसल का रोपण

तालिका 3 ड्रिप सिंचाई के तहत पानी की बचत और उपज में वृद्धि

फसलें	ड्रिप फर्टिगेसन के तहत पैदावार (टन/हे)	परंपरागत विधि के तहत पैदावार (टन/हे)	पैदावार में वृद्धि (टन/हे)	सिंचाई जल की बचत (%)
आलू	44	29	15	39
मिर्च	30	20	10	47
प्याज	51	28	23	44
गेहूँ	7	5	2	39
बसंत मक्का	6	4	2	40
मटर	20	11	9	50
बैंगन	75	44	31	44
सूरजमुखी	3	2	1	33
अमरूद	15	9	6	18
धान	7	7	0	48
गोभी	32	20	12	40
गन्ना	109	70	39	35

(स्रोत: पंजाब की फसलों और सब्जियों के लिए सिफारिश पैकेज, 2018-19)

खेत का आकार

पंजाब राज्य की गेहूँ एक प्रमुख फसल है जिसकी आमतौर पर खेतों में क्यारे बनाकर सिंचाई की जाती है। अगर क्यारों को वहाँ की कृषि भूमि के अनुसार सही ढ़लान दिया जाये तो सिंचाई जल उपयोग की क्षमता को 60-70% तक बढ़ाया जा सकता है, जबकि ऐसा न करने से सिंचाई जल की उपयोग क्षमता केवल 30-40% तक ही प्राप्त हो पाती है। विभिन्न क्षत्रों की स्थिति और उनके अनुमेय ढ़लानों के आधार पर पंजाब कृषि विश्वविद्यालय द्वारा क्यारों के अलग-अलग आकारों की सिफारिश का सुझाव दिया है जिसे तालिका 4 में प्रस्तुत किया गया है।

तालिका 4 एक एकड़ लंबे खेत की कुशल सिंचाई के लिए, विभिन्न प्रकार के भूमि, ढलानों, और निर्वहन के तहत उपयुक्त क्यारे का आकार

मृदा का प्रकार	औसत ढ़लान (%)	नलकूप वितरण आकार (निर्वहन, लीटर प्रति सेकंड)	नहर के आउटलेट से निर्वहन (लीटर प्रति से		सेकंड)		
		3"-4" (7.5-10)	5" (15)	6" (20)	30	45	60
		प्रति एकः	ड़ खेत में क्य	ारों की संख्य	Π		
हल्की	0.3	17-18	14-15	12-13	9-10	6-7	4-5
	0.4	15-16	13-14	10-11	7-8	5-6	
	0.5	13-14	11-12	9-10	6-7	4-5	
मध्यम	0.2	12-13	9-10	6-7	4-5		
	0.3	10-11	7-8	5-6			
	0.4	8-9	6-7	4-5			
भारी	0.05	9-10	6-7	4-5			
	0.15	7-8	5-6				
	0.25	6-7	4-5				

(स्रोत: पंजाब की फसलों और सब्जियों के लिए सिफारिश पैकेज, 2018-19)

रहिमन पानी राखिए, बिन पानी सब सून पानी गए न उबरे, मोती मानुष चून।

भारत में लगभग 140 मिलियन हेक्टेयर खेती योग्य भूमि में से वर्ष 1950-51 के दौरान नहर से सिंचित कुल क्षेत्र 8.3 मिलियन हेक्टेयर ही रिपोर्ट किया जा चुका है जो अब वर्तमान में 17 मिलियन हेक्टेयर तक बढ गया है। इसके बावजूद भी वर्ष 1951 में नहरों का सापेक्ष महत्व 40% से घटकर वर्ष 2010-11 में 26% तक घट गया है (धवन, 2017)। चूँकि, आजकल नहर से सिंचाई करने में कई बाधाएं सामने आ रही हैं जिसके परिणामस्वरूप देश के विशेष रूप से पूर्वी क्षेत्र में इस सिंचाई पद्धति की बहत कम दक्षता प्राप्त होती है। नहरी सिंचाई प्रणालियों में प्रमुख समस्या जैसे कि खुदी हुई बिना अस्तर वाली नहरें हैं जिससे जल वहन प्रक्रिया में भारी नुकसान पहुँचता है। इसके अलावा कुछ अन्य महत्त्वपूर्ण समस्याएं जैसे बिना कोई वोल्यूमेट्रिक वितरण प्रावधान के साथ उचित सिंचाई बुनियादी ढाँचे की कमी, खेत से खेत की सिंचाई, नहर के मुख्य छोर पर किसानों के पास जल का अत्यधिक विशेषाधिकार होना और मानसून के महीनों के दौरान ही नहर में जल का उपलब्ध होना आदि हैं। नतीजतन, वर्तमान के दौरान भारत में मध्यम और प्रमुख नहरी कमांड्स में जल की उपयोग दक्षता केवल 38% ही है। इस जल उपयोग दक्षता को बाढ़ सिंचाई विधि की जगह ड़िप और स्प्रिंकलर सिंचाई विधियों को स्थानांतरित करने के माध्यम से काफी हद तक सुधारा जा सकता है। नहरी कमांड्स में इन महत्त्वपूर्ण विकल्पों के द्वारा विभिन्न फसलों की उपज को 10-50% तक बढाने के साथ-साथ 60% तक सिंचाई जल को भी बचाया जा सकता है (शिवानाप्पन, 1994) I

इसी बात को ध्यान में रखते हुए भाकृ अनुप – भारतीय जल प्रबंधन संस्थान, भुवनेश्वर के वैज्ञानिकों ने ओडिशा राज्य के पुरी जिले में पुरी मुख्य नहर प्रणाली से निकलने वाली माइनर नहर के कमांड क्षेत्र में एक पायलट अध्ययन को शुरू किया गया। इस अनुसंधान के तहत नहर के दोनों ओर सहायक जल भंडारण संरचनाओं के निर्माण के प्रावधान से पीवीसी पाइप जल वहन प्रणाली के साथ दबाव सिंचाई प्रणाली द्वारा नहर के मुख्य, मध्यम और अंतिम छोर पर किसानों को सिंचाई जल की सुविधा उपलब्ध करवाई गई। इस पूरी सिंचाई सुविधा का उद्देश्य सुनिश्चित जल संसाधनों का विकास

नहरी कमांड क्षेत्र के तहत जल उत्पादकता में वृद्धि के विकल्प

आर.के. पंडा, एस.के. राऊतराय, पी. पानीग्राही, ओ.पी. वर्मा, एस.के. अम्बष्ट, एस. रायचौधुरी, ए.के. ठाकुर, आर.के. मोहंती, एम.के. सिन्हा एवं ए.के. सिंह

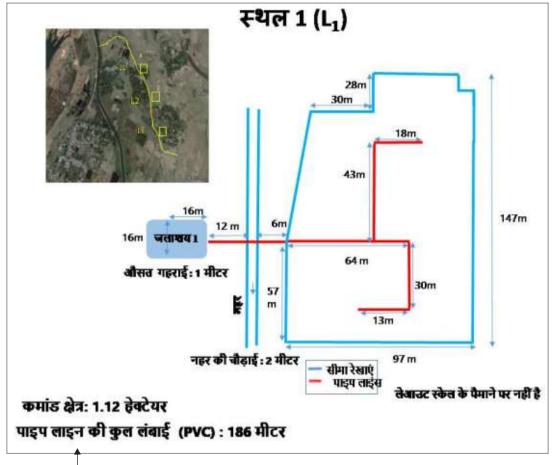
भाकृ अनुप – भारतीय जल प्रबंधन संस्थान, भुवनेश्वर, ओडिशा

करना, फसल पैदावार एवं जल की उत्पादकता में वृद्धि करना था जिससे किसानों का कृषि उत्पादन बढ़ सके और उनकी खेती की आय में वृद्धि हो सके।

अध्ययन सामग्री और विधियाँ

इस अनुसंधान को भारत के ओड़ीशा राज्य में खुर्दा जिले के दो गाँवों नागपुर और हिरापुर (ग्राम पंचायत- उमादेई ब्रह्मपुर, तहसील-बालीयन्ता) जो 20°13′27″ उत्तरी अक्षांश और 85°52′46″ पूर्वी देशान्तर के मध्य स्थित हैं। नागपुर माइनर नहर पुरी मुख्य नहर से कम दूरी यानी 35.620 किलोमीटर (बायां) पर निकलती है और नागपुर और हिरापुर गाँवों से गुजरती है। यह माइनर नहर 0.3 घनमीटर/सेकंड के डीजाइंड निर्वहन के साथ कुल 3 किलोमीटर की लंबाई तक बहती है और इसका कुल कमांड क्षेत्र 156 हेक्टेयर है।

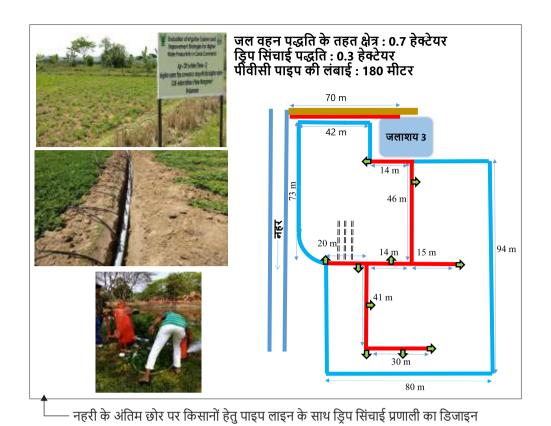
सिंचाई बेंचमार्किंग


निर्धारित दिशानिर्देशों के आधार पर तीन डोमेनों जैसे कि सिंचाई पद्धित के प्रदर्शन, कृषि उत्पादकता और वित्तीय पहलुओं पर विचार करते हुए नहर की सिंचाई क्षमता का अध्ययन किया गया। पद्धित प्रदर्शन संकेतक जैसे पद्धित प्रदर्शन के तहत वार्षिक सिंचाई जल की आपूर्ति प्रति यूनिट कमांड क्षेत्र (घनमीटर/हेक्टेयर); कृषि उत्पादकता के तहत आउटपुट प्रति यूनिट किसल जल माँग (₹/हेक्टेयर); और वित्तीय संकेतकों के तहत लागत वसूली अनुपात को नहर प्रणाली की हाइड्रोलिक क्षमता की जानकारी के लिए उपयोग में लिया गया।

इस नहर में वार्षिक सिंचाई जल की आपूर्ति से संबंधित आँकड़ों को जल संसाधन विभाग, ओडिशा सरकार से एकत्रित किया गया और नहर में भी मापा गया। इसी तरह, फसलों की उपज के आँकड़ों को किसानों के खेत के उत्पादन से एकत्रित किया गया और इनको किसी विशेष फसल के न्यूनतम समर्थन मूल्य के आधार पर मौद्रिक रूप में परिवर्तित किया गया। नहर की रखरखाव लागत सहित नहर प्रणाली को चलाने में शामिल लागत से एकत्रित सकल राजस्व के आधार पर लागत वसूली अनुपात को प्राप्त किया गया।


सिंचाई दक्षता और वहन प्रणाली

महत्त्वपूर्ण सिंचाई प्रावधानों जैसे कि पीवीसी पाइप वहन प्रणाली, पीवीसी पाइप वहन के साथ स्प्रिंकलर सिंचाई प्रणाली और पीवीसी पाइप वहन के साथ ड्रिप सिंचाई प्रणाली आदि की डिजाइन को माइनर नहर के मुख्य, मध्य और अंतिम छोर तक सिंचाई जल को पहुँचाने के लिए तैयार किया गया और किसानों के खेतों पर इन सिंचाई प्रणालियों को स्थापित भी किया गया। माइकल (1978) द्वारा सुझाए गए दिशा निर्देशों के अनुसार इन सिंचाई प्रणालियों का डिजाइन बनाया गया था। विकसित की गई यह सभी सिंचाई सुविधाएं मौजूदा सहायक जल भंडारण संरचनाओं से जुड़ी हुई थी ताकि नहर के जल को सरंक्षित किया जा सके और सूखे के मौसम के दौरान रबी मौसम की फंसलों में सिंचाई के लिए इस सरंक्षित जल का उपयोग किया जा सके। माइनर नहर के तीनों छोर (मुख्य, मध्य एवं


अंतिम छोर) ओर विकसित की गई सिंचाई प्रणालियों की डिजाइन को नीचे दिए गए चित्रों के माध्यम से दर्शाया गया है।

नहर के ऊपरी छोर पर किसानों हेतु पाइप लाइन सिंचाई पद्धति की डिजाइन

नहर के मध्य छोर पर किसानों हेतु पाइप लाइन के साथ स्प्रिंकलर सिंचाई प्रणाली का डिजाइन

परिणाम और चर्चा

सिंचाई पद्धित के प्रदर्शन, कृषि उत्पादकता और वित्तीय क्षमता के संदर्भ में माइनर नहर का बेंचमार्किंग किया गया। सिंचाई पद्धित के प्रदर्शन के तहत परिणामों से पता चला कि प्रति इकाई कमांड क्षेत्र में सिंचाई जल की आपूर्ति यहाँ पर डिजाइन की गई आपूर्ति 20970/हेक्टेयर से 73% कम पाई गई। धान की फसल के लिए कृषि उत्पादकता की बाजार आधारित उत्पादन बनाम आपूर्ति किए गए जल के मुकाबले 18% कम की गणना की गई। जब वर्ष 2015-16 के दौरान

धान के न्यूनतम समर्थन मूल्य ₹ 1410/िकटल, 3.9 टन/हेक्टेयर की औसत फसल उपज और 5565/हेक्टेयर की वास्तिवक जल आपूर्ति को विचार करने पर इस उत्पादकता की ₹ 9.9/िघनमीटर के रूप में गणना की गई। इसी प्रकार, वित्तीय क्षमता को लागत-वसूली अनुपात के रूप में व्यक्त किया गया जो 0.1 के रूप में प्राप्त हुआ। लेकिन, जब जल के शुल्क और कमांड में उपलब्ध करवाए गए जल पर विचार किया गया तो वित्तीय क्षमता की लागत की गणना ₹ 0.39 लाख के रूप में की गई। उपर की

गई गणना हेतु खरीफ मौसम के लिए जल के मूल्य ₹ 250/हेक्टेयर (स्रोत: राजपत्र संख्या 494 दिनांक 05.04.2002) और ₹ 4 लाख (स्रोत: जल संसाधन विभाग, ओडिशा सरकार) को उपयोग में लिया गया। खरीफ मौसम के दौरान किसानों द्वारा विभिन्न फसलों में उपयोग में ली गई विभिन्न सतही सिंचाई विधियों के तहत सिंचाई जल प्रयोग दक्षता और वितरण दक्षता क्रमश: 55 से 75% और 65 से 80% के बीच प्राप्त हुई (तालिका 5)।

तालिका 5. नहरी कमांड में खरीफ मौसम के दौरान विभिन्न फसलों में सिंचाई दक्षता एवं जल उपयोग दक्षता

सिंचाई विधियाँ	फसलें	सिंचाई दक्षता	जल उपयोग दक्षत	ा (किग्रा/हे-मिमी
		जल प्रयोग दक्षता (%)	वितरण दक्षता (%)	
क्यारी	मूँगफली	60	70	0.35
क्यारी	मूँग	55	65	0.31
कुंड	ਮਿण्डी	65	75	5.57
क्यारी एवं कुंड	परवल			3.72
क्यारी एवं कुंड	करेला	70-75	75-80	1.63
क्यारी एवं कुंड	तरबूज			6.35
क्यारी एवं कुंड	ककड़ी			1.77

नहरी सिंचाई प्रणाली के खराब प्रदर्शन के कारण सम्पूर्ण सिंचाई पद्धति में सुधार के लिये कमांड क्षेत्र में ऊपरी, मध्य और अंतिम छोर पर पाइप वहन आधारित दबाव सिंचाई पद्धति की सुविधा का निर्माण किया गया। इसको आगे चित्र एवं फोटो में दिखाया गया है। यह योजना इसलिए बनाई गई थी ताकि मानसून के मौसम के दौरान माइनर नहर के निकट कृषि खेत के पास मौजूद सहायक टैंक से जल को उपयोग में लिया जा सके। इस प्रणाली का हाइडोलिक प्रदर्शन 7% के भिन्नता गुणांक के साथ अच्छा पाया गया। किसानों के खेत पर डिप सिंचाई प्रणाली को 96% की जल वितरण दक्षता और स्प्रिंकलर सिंचाई प्रणाली को ८७% की वितरण एकरूपता के साथ संतोषजनक पाया गया। कुल मिलाकर शुरुआती अध्ययन से यह संकेत प्राप्त हुआ कि वर्तमान के दौरान प्राप्त विभिन्न फसलों में 35-60% सिंचाई दक्षता को ड्रिप एवं स्पिंकलर सिंचाई प्रणालियों के उपयोग द्वारा क्रमश: 90% और 80% तक बढ़ाया जा सकता है।

सिंचाई के बुनियादी ढाँचे का प्रदर्शन

माइनर नहर के ऊपरी छोर के कमांड क्षेत्र में पीवीसी पाइप वहन के माध्यम से विकसित सिंचाई बुनियादी ढाँचे के कारण मूँगफली और अलसी/तिल की फसलों में 17% कम सिंचाई जल प्रयोग के साथ उपज में 8-14% तक वृद्धि हुई। नतीजतन, चैनल वहन आधारित सिंचाई प्रणाली की तुलना में इस सिंचाई विधि से जल की उत्पादकता में 30-38% तक वृद्धि हुई। इसी प्रकार, माइनर नहर के मध्य छोर के कमांड क्षेत्र में चैनल वहन प्रणाली की तुलना में स्प्रिंकलर सिंचाई प्रणाली से मँगफली और अलसी/तिल की फसलों में सिंचाई करने से इन फसलों की पैदावार में 28-31% तक की बढोतरी प्राप्त हुई। इन्ही फसलों में 22-28% तक कम सिंचाई जल की खपत के कारण जल उत्पादकता में 70-78% तक वृद्धि हुई। यदि ड़िप सिंचाई प्रणाली को सहायक जल संचयन प्रणाली से जोडा जाये तो माइनर नहर के अंतिम छोर के कमांड क्षेत्र में रबी के मौसम के दौरान सब्जियों की फसलों को सफलतापर्वक उगाया जा सकता है। इस क्षेत्र में सब्जियों की फसलों जैसे परवल एवं करेला की खेती के कारण 30-33% कम जल के प्रयोग के साथ इनकी उपज में 32-35% तक की वृद्धि हुई जिसके परिणामस्वरूप 89-104% तक की बढी हुई जल उत्पादकता प्राप्त हुई (तालिका 6 क.ख एवंग)।

नहरी कमांड के तहत पाइप कनवेनेंस सिंचाई पद्धति

तालिका ६. नहर के विभिन्न छोर पर फसलों की उपज एवं जल उत्पादकता

(ক)

फसलों के	साथ स्थान	सिंचाई प्रणाली	उपज (टन/हे)	प्रयोग किया गया जल (मिमी)	जल उत्पादकता (किग्रा/घनमीटर)
ऊपरी छोर	मूँगफली	पाइप वहन चैनल वहन	1.8 1.66	300 360	0.60 0.46
	अलसी/तिल	पाइप वहन चैनल वहन	1.1 0.96	150 180	0.73 0.53

(ख)

फसलों के	साथ स्थान	सिंचाई प्रणाली	उपज (टन∕हे)	प्रयोग किया गया जल (मिमी)	जल उत्पादकता (किग्रा/घनमीटर)
मध्य छोर	मूँगफली	पाइप वहन स्प्रिंकलर वहन चैनल वहन	1.93 2.24 1.71	300 280 360	0.64 0.80 0.47
	अलसी/ तिल	पाइप वहन स्प्रिंकलर चैनल वहन	1.16 1.37 1.07	150 130 180	0.77 1.05 0.59

फसलों के	फसलों के साथ स्थान		उपज (टन/हे)	प्रयोग किया गया जल (मिमी)	जल उत्पादकता (किग्रा/घनमीटर)
		पाइप वहन	1.92	300	0.64
निचला छोर	मूँगफली	ड्रिप सिंचाई	2.46	240	1.02
		चैनल वहन	1.82	360	0.50
		पाइप वहन	17.8	300	5.93
	परवल	ड्रिप सिंचाई	22.31	240	9.29
		चैनल वहन	16.5	350	4.71
		पाइप वहन	14.6	250	5.84
	करेला	ड्रिप सिंचाई	18.12	210	8.62
		चैनल वहन	13.7	300	4.56

धान की खेती आधारित नहर के कमांड क्षेत्रों में संचित जल एवं इस सरंक्षित जल का दबाव सिंचाई प्रणालियों जैसे पाइप वहन, स्प्रिंकलर और ड्रिप आदि का उपयोग फसलों की उपज और जल की उत्पादकता को बढ़ाने हेतु संभावित महत्त्वपूर्ण विकल्प हैं। कृषि में कम सिंचाई जल के साथ फसलों की उपज और लाभप्रदता को बढ़ाने के लिए इन महत्त्वपूर्ण सिंचाई प्रणालियों को नहर के कमांड क्षेत्रों में बड़े पैमाने पर क्रियान्वित किया जा सकता है। इन प्रणालियों के उपयोग द्वारा बचाये गए जल का अन्य उद्देश्यों के लिए इस्तेमाल किया जा सकता

है या इस बचाये गए जल की मात्रा से और अधिक क्षेत्रों में फसलों की सिंचाई की जा सकती है।

संदर्भ

एनोनीमस. 2002. भारत में सिंचाई प्रणालियों की बेंचमार्किंग के लिए दिशानिर्देश। इंडियन नेशनल कमिटी ऑन इरिगेसन एंड ड्रेनेज (INCID), नई दिल्ली, पृष्ठ 1-26।

धवन, वी. 2017. भारत में जल और कृषि। ग्लोबल फोरम फॉर फूड एंड एग्रीकल्चर (GFFA), जर्मन एशिया-पैसिफिक बिजनेस एसोसिएशन के दौरान दक्षिण एशिया विशेषज्ञ पैनल के लिए बेकग्राउंड पेपर। पृष्ठ 1-27।

माइकल, एम. 1978. इरिगेसन थ्योरी एंड प्रेक्टिस। विकास पब्लिशिंग हाउस प्राइवेट लिमिटेड, नई दिल्ली, पृष्ठ 801।

शिवानाप्पन, आर.के. 1994. भारत में सूक्ष्म सिंचाई की संभावनाएं, इरिगेसन एंड ड्रेनेज सिस्टम, 8 (1): 49-58।

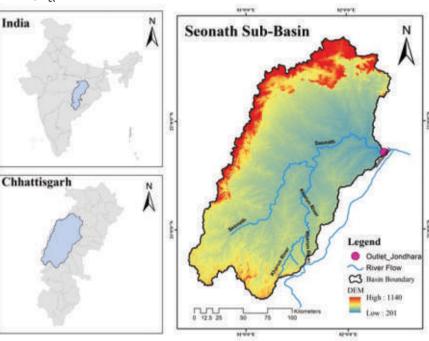
जल विज्ञान और जल गुणवत्ता की जांच किसी भी जलग्रहण क्षेत्र प्रबंधन कार्यक्रम के लिए बहुत ही आवश्यक है। शिवनाथ उप-बेसिन, महानदी बेसिन की सबसे लंबी सहायक नदी है। शिवनाथ उप-बेसिन का कुल जलग्रहण क्षेत्र 29,638.9 वर्ग किलोमीटर है। शिवनाथ उप-बेसिन 80°25' से 82°35' पूर्व देशांतर तथा 20°16' से 22°41' उत्तर अक्षांश के बीच एवं औसत समुद्र तल (एमएसएल) से 201-1140 मीटर की ऊँचाई पर स्थित है जिसको अगले पृष्ठ पर दिये गए चित्रों में दर्शाया गया है। अध्ययन की दृष्टि से डीईएम और जल निकास से प्राप्त स्थालाकृति मापदंडों का अध्ययन कर शिवनाथ उप-बेसिन को 21 जलग्रहण क्षेत्रों में विभाजित किया गया है। इस अध्ययन क्षेत्र में आमतौर पर वार्षिक वर्षा 700 से 1500 मिमी के बीच होती है तथा औसत वार्षिक वर्षा 1080 मिमी है। इस अध्ययन क्षेत्र के समग्र वातावरण को सब-ट्रॉपिकल रूप में वर्गीकृत किया गया है। शिवनाथ उप-बेसिन के मोर्फोमेटिक गुणों की स्थिति की जानकारी एकत्रित की गई तथा इनका विश्लेषण भौगोलिक सूचना प्रणाली (जीआईएस) के माध्यम से किया गया। इस अध्ययन में कन्टीन्युअस डिस्ट्रिब्यूटेड पैरामीटर मॉडल जिसे सोइल एण्ड वाटर असेसमेंट टूल (एसडब्लूएटी) यानि स्वाट के नाम से जाना जाता है का विश्लेषण व परीक्षण मासिक और मौसमों के आधार पर भूजल प्रवाह/नदी प्रवाह तलछट की सांद्रता और पोषक तत्वों के नुकसान के लिए किया गया। जिसके माध्यम से अधिक समस्याग्रस्त जलग्रहण क्षेत्रों के प्रबंधन के लिए कई अलग-अलग परिदृश्यों को विकसित किया भौगोलिक प्रणाली सूचना (जीआईएस) का उपयोग करके उप-बेसिन और वाटरशेड की सीमाएं, जल निकासी नेटवर्क, ढ़लान, मुदा के प्रकार के मानचित्र तैयार किए गए जिनका उपयोग सोइल वाटर असेसमेंट टूल मॉडल में किया गया (जिनको आगे के चित्रों में दर्शाया गया है)। वर्ष 2006 और वर्ष 2013 की सैटेलाइट इमेजरिज का उपयोग कर भूमि उपयोग/ अच्छादन का वर्गीकरण पर्यवेक्षित विधि के माध्यम से किया गया। वर्ष 2003-2009 कैलिब्रेशन (अंशाकन अवधि), और 2010-2013 वेलिडेशन (सत्यापन अवधि) के लिए मासिक और मौसमी समय के अपवाह.

जल विज्ञान और जल की गुणवत्ता के मॉडल द्वारा शिवनाथ उप-बेसिन के समस्याग्रस्त जल ग्रहण क्षेत्रों के प्रबंधन हेतु सुझाव

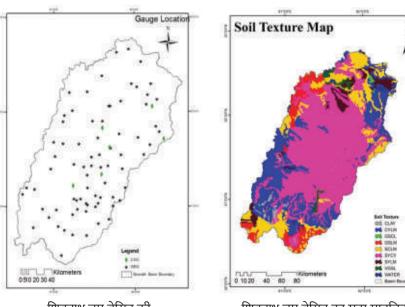
एम.पी. त्रिपाठी, गौरव कान्त निगम, धीरज खलखो एंव मंजू ध्रुव मृदा एवं जल अभियांत्रिकी विभाग, स्वामी विवेकानन्द कृषि अभियांत्रिकी एवं प्रौद्योगिकी महाविधालय, इंदिरा गांधी कृषि विश्वविधालय, रायपुर (छत्तीसगढ.)

तलछट सान्द्रता तथा पोषक तत्वों के नकसान की उनके समक्ष वास्तविक आंकड़ों के साथ तुलना की गई। शिवनाथ उप-बेसिन में सर्वाधिक समस्याग्रस्त जलग्रहण की पहचान मदा और पोषक तत्वों के वार्षिक नकसान के आधार पर की गई। ग्राफिक, गणितीय और सांख्यिकीय सहित कई अनुशंसित मापदंडों को मॉडल अंशाकन और सत्यापन प्रर्दशन के मुल्यांकन के लिए उपयोग में लिया गया। पर्याप्त रूप से परीक्षण किए गए स्वाट मॉडल को शिवनाथ उप-बेसिन की पहचान और प्राथमिकता के लिए लागू किया गया। इस मॉडल को मासिक प्रवाह दर और तलछट सान्द्रता के लिए अंशाकित भी किया गया जिसमें r² और नैश-सटाक्लेफ गुणांक (ईएनएस) के मूल क्रमशः 0.89, 0.81 और 0.78, 0.89 प्राप्त हुए। औसत मौसमी आंकडों के आधार पर नाइट्रेट-नाइट्रोजन और कुल फास्फोरस के पोषक तत्वों का नुकसान भी सिम्युलेट किया गया। मॉडल के अंशाकन में आर² 0.86 व 0.81 तथा ईएनएस 0.90 और 0.89 क्रमशः नाइटेट-नाइट्रोजन और कुल फास्फोरस के साथ प्राप्त हुए। मॉडल इनपुट मापदंडों के संवेदनशीलता विश्लेषण के परिणामो में यह बात सामने आई कि प्रवाह की दर और तलछट सान्द्रता सोइल कंजरवेषन सर्विस (एससीएस) कर्व नंबर (सीएन) के लिए अधिक संवेदन शील होती है। जिसके बाद सतही जल प्रवाह के लिए मैंनिग गुणांक (एन), सतह के निर्वहन के अतंराल के समय और प्रबंधन पद्धति कारक (पी) है।

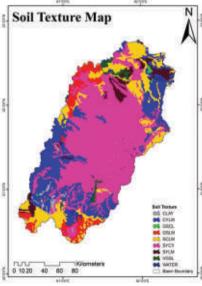
मॉडल के सत्यापन के परिणामों ने बताया

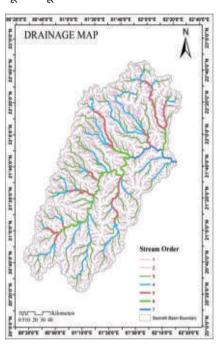

कि वर्ष 2010 से 2013 (मानसून मौसम) के लिये प्रवाह दर और तलछट सान्द्रता के शिखर आपस में अच्छी मिलान प्रदर्शित करते हैं। दोनों वास्तविक तथा मॉडल से प्राप्त आकडों के लिए निर्धारण के गुणांक (आर2) और नैश-सैटाक्लिफ गणांक (इएनएस) 0.93, 0.91 और 0.98, 0.92 क्रमशः मासिक प्रवाह की दर और तलछट सान्द्रता. मॉडल के बहत अच्छे प्रदर्शन को सत्यापित करते हैं। निर्धारण गुणांक (आर²) और नैश- सैटाक्लिफ गुणांक (ईएनएस) के गुणांक के गुणों को कुल फॉस्फोरस के लिये 0.94 और 0.98 पाया गया। वर्षा जनरेटर के प्रर्दशन मुल्यांकन को देखने के लिए वास्तविक मॉडल द्वारा प्राप्त मासिक वर्षा की तुलना की गई और उनके बीच का परिणाम बहुत अच्छा प्राप्त हुआ (आर²=0.90 और इएनएस=0.99)। प्रवाह दर, तलछट की सान्द्रता और पोषक तत्वों की हानि की चित्रमय तलनात्मकता से पता चला कि मान्यता अवधि के लिए शिखर का समय अच्छी तरह से मेल खाता है।

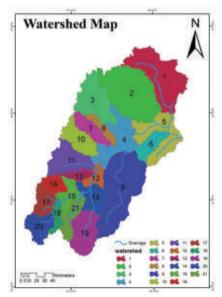
समस्याग्रस्त जलग्रहण क्षेत्रों की पहचान वहाँ प्राप्त वर्षा अपवाह, तलछट उपज दरों और पोषक तत्वों की हानि के आधार पर की गई। कुल 21 जलग्रहण क्षेत्रों में से वाटरशेड 10 में मृदा का क्षरण मिट्टी के नुकसान समूह में अति उच्च क्षरण वर्ग में था। डब्ल्यूएस 9, डब्ल्यूएस 12, डब्ल्यूएस 13, डब्ल्यूएस 14, डब्ल्यूएस 18, और डब्ल्यूएस 20 आदि जल ग्रहण क्षेत्र मिट्टी के नुकसान समूह में मृदा क्षरण के उच्च क्षरण वर्ग के रूप में पाए गए। जलग्रहण क्षेत्र डब्ल्यूएस 1, डब्ल्यूएस 11, डब्ल्यूएस 16, और डब्ल्यूएस 17 को मृदा

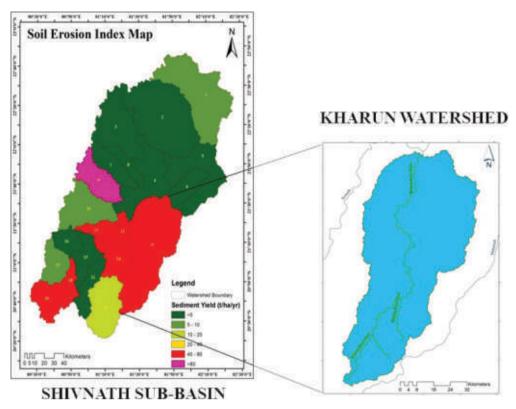

क्षरण के मध्यम क्षरण वर्ग के मुदा के नुकसान समूह में पाया गया। शिवनाथ सब बेसिन में डब्ल्यूएस 9 जो कि सर्वोत्तम समस्या वाले खारुन जल ग्रहण क्षेत्र को मानचित्र में दर्शाया गया है।

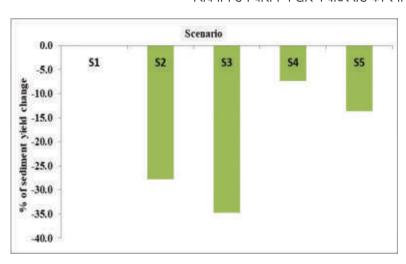
फिल्टर पट्टी और पत्थर/मृदा के बाँधों को मृदा के क्षरण के नुकसान को कम करने के लिए उचित पाया गया। इनके माध्यम से मृदा का क्षरण क्रमशः 27.8% और 34.7% तक कम हो जाता है। समस्याग्रस्त जलग्रहण क्षेत्र के लिए भूजल क्षमता वाले क्षेत्रों की भी पहचान की गई और कम भूजल क्षमता वाले क्षेत्रों में भूजल की क्षमता को बढाने के लिए 120 जल भंडारण टैंक, 70 परकोलेशन टैंक, 34 स्टॉप बांध और 34 चैक बाँध आदि को निर्मित करने का सुझाव दिया गया। अति समस्याग्रस्त जलग्रहण क्षेत्र (डब्ल्यूएस 9) में भूजल प्रवाह के आकलन के लिए विजुअल मोंडफ्लो मोंडल का उपयोग किया गया और इसके परीक्षण के बाद इसे शिवनाथ उप-बेसिन के संवेदनशील जलग्रहण क्षेत्र के लिए अनुकूलित पाया गया। इस मॉडल के


परिणामों के आधार पर धरसींवा और आरंग तहसीलों में टयूब वेल की संख्या वहाँ स्वीकृत संख्या से अधिक पाई गई जबकि तिल्दा और अभनपुर तहसीलों में अधिक संख्या में नलकूपों के निर्माण की अभी भी संभावना है। भूजल के संक्रमण ड्रेस्टिक मॉडल का उपयोग करते हुए अति समस्याग्रस्त जलग्रहण क्षेत्र का भूजल प्रदूषण क्षमता मानचित्र भी तैयार किया गया जिसमें से 75% से अधिक क्षेत्र कम से मध्यम भूजल प्रदुषण वाली श्रेणी में पाया गया।


शिवनाथ उप-बेसिन का स्थान निर्धारण मानचित्र


शिवनाथ उप बेसिन की गेजिंग साइट्स का स्थान मानचित्र


शिवनाथ उप बेसिन का मृदा मानचित्र


शिवनाथउप-बेसिन के स्ट्रीमऑर्डरकेसाथड्रेनेजनेटवर्क

स्वचालितक्षेत्रीय उप बेसिनऔर अध्ययन क्षेत्र की वाटरशेडसीमाएं

शिवनाथ उप बेसिन में खारुन वाटरशेड का स्थान निर्धारण मानचित्र

विभिन्न परिदृश्यों के कारण तलछट उपज में कमी की तुलना

भूजल रिचार्ज संरचनाओं और उनके प्रकार का प्रस्तावित स्थान

मॉर्फोमेट्रिक विश्लेषण के आधार पर वाटरशेड के प्राथमिकता से पता चला कि वाटरशेड डब्ल्यूएस 1, डब्लूएस 2, डब्ल्यूएस 6, डब्लूएस 9, डब्ल्यूएस 12, डब्ल्यूएस 14, डब्लूएस 19 और डब्ल्यूएस 20 के उच्च प्राथमिकता में गिरावट आई है और उच्च मिट्टी के क्षरण के कारण अतिसंवेदनशील वाटरशेड के रूप में संकेत मिलता है। सतही प्रवाह और चैनल प्रवाह के लिए मैनिंग के (एन) मान क्रमशः शिवनाथ उप-बेसिन के लिए 0.132 और 0.024 हैं।

मॉडल इनपुट पैरामीटर के संवेदनशीलता विश्लेषण से पता चलता है कि धारा निर्वहन एवं प्रवाह का दर और तलछट एकाग्रता सोइलकंजर्वेशनसर्विस (एससीएस) कर्व नंबर (सीएन) के लिए अधिक संवेदनशील होती है जिसके बाद सतही प्रवाह (ओवीएन) सतह के प्रवाह के लिए मैनिंग खुरदरापन गुणांक होता है समय (सुरलाग) और समर्थन अभ्यास कारक (यूएसएलईपी)। मानसून के मौसम के लिए स्वाट मॉडल द्वारा नाइट्रेट-नाइट्रोजन और कुल फोस्फोरस सहित पोषक तत्वों को संतोषजनक बनाया जा सकता है।

यह सर्वविदित है कि जिस प्रकार से मनष्य को अपनी शारीरिक आवश्यकता के हेत जल की आवश्यकता पड़ती है वैसे ही पौधों को भी अपनी जरूरतें पूरी करने के लिये जल की आवश्यकता पड़ती है। पौधों के लिये कई प्रकार के खनिज तत्व एवं रासायनिक यौगिक मुदा में मौजूद रहते हैं लेकिन पौधे उन्हें ठीक तरह से ग्रहण नहीं कर सकते हैं। मुदा में उपस्थित जल इन तत्वों को घोल कर जड़ों के माध्यम से पौधों की पत्तियों तक पहुँचाता है। पूर्वी उत्तरप्रदेश में किसान प्राय: धान-गेहँ फसल चक्र को अपनाते हैं लेकिन नहर के अंतिम छोर पर सिंचाई जल की कम उपलब्धता के कारण कृषकों को पारंपरिक फसलोत्पादन से समुचित लाभ नहीं मिल पाता है। इस क्षेत्र की शारदा सहायक नहरी कमांड की चाँदपुर रजबहा एवं उसकी छ: अल्पिकाओं के अधीन कुल 4551 हेक्टेयर क्षेत्रफल आता है जिसका मात्र 27.7 प्रतिशत क्षेत्रफल ही इस उपलब्ध जल से सिंचित हो पाता है जिसका अधिकांश भाग अल्पिकाओं के शीर्ष एवं मध्यम छोर तक ही सीमित होता है तथा अंतिम छोर पर सिंचाई जल की बहुत कमी रहती है। अत: नहर के अंतिम छोर पर कम सिंचाई जल उपलब्ध होने की स्थिति में जल की उपलब्धता के अनुसार उचित फसल योजना तैयार करनी चाहिये तथा सीमित जल का अधिक से अधिक फसल द्वारा उपयोग संभव करवाना ही तमाम कृषि पद्धतियों का मूलभूत उद्देश्य होना चाहिये ताकि कृषि से अधिक उत्पादन प्राप्त किया जा सके।

अतः इस गंभीर स्थिति में नहरं के अंतिम छोर पर जहाँ सिंचाई जल कम उपलब्ध रहता है वहाँ कम जल की आवश्यकता वाली दलहनी फसल अरहर के साथ उड़द/धान (अगेती प्रजाति) की सहफसली खेती उपलब्ध जल (नहरं और वर्षा जल) के सही उपयोग यानि प्रति जल बूंद अधिक फसल उत्पादन (More crop per drop) के सिद्धान्त पर करना उपयुक्त हो सकता है। इसी प्रमुख उद्देश्य को ध्यान में रखकर चाँदपुर रजबहा की अल्पिकाओं के अंतिम छोर पर किसानों की सहभागिता से उनके खेतों पर लगातार चार वर्षों तक इस तकनीक का अध्ययन पारंपरिक कृषि

नहर के अंतिम छोर पर सिंचाई जल की कम उपलब्धता की स्थिति में अरहर के साथ उड़द/धान की उन्नत खेती

आर.सी. तिवारी, बी.एन. सिंह एवं वेद प्रकाश नरेंद्र देव कृषि एवं प्रौद्योगिकी विश्व विद्यालय, कुमारगंज, फैजाबाद (उत्तरप्रदेश)

पद्धति के सापेक्ष किया गया। इन अनुसंधान परीक्षणों के परिणाम काफी उत्साहजनक प्राप्त हये हैं।

अरहर के साथ उडद/धान की खेती

कम जल माँग वाली दलहनी फसल अरहर के साथ उड़द/धान (अगेती प्रजाति) की सहफसली खेती को दो अलग अलग फसल पद्धतियों के साथ किया जा सकता है। इस प्रकार से खेती करने पर किसान अपने खेत से अधिक फसल उत्पादन प्राप्त कर सकते हैं।

1. अरहर की दो पंक्तियों की 50 सेंटीमीटर की दूरी पर एक मीटर के अंतराल पर बनी ऊँची क्यारियों पर बुआई तथा अगेती धान की किस्म नरेंद्र धान-97 की

- पाँच पंक्तियों की निचली भूमि में बुआई (सहफसली खेती पद्धति)
- 2. अरहर की दो पंक्तियों की 50 सेंटीमीटर की दूरी पर एक मीटर के अंतराल पर बनी ऊँची क्यारियों पर बुआई तथा उड़द की तीन पंक्तियों की 20 सेंटीमीटर चौड़ी नाली के बाद बनी ऊँची क्यारियों पर बुआई (सहफसली) खेती पद्धति।

सहफसली खेती पद्धति के परिणाम

आमतौर पर यही देखा गया है कि किसी भी नहर के तीन छोरों (मुख्य, मध्यम एवं अंतिम) में से इसके अंतिम छोर पर किसानों हेत् कृषि के लिए जल की उपलब्धता कम ही प्राप्त हो पाती है क्योंकि नहर में छोड़े गए जल का अधिकांश उपयोग मुख्य एवं मध्यम छोर पर कृषि करने वाले किसान कर लेते हैं। अत: इस स्थिति का सामना करने के लिए वहाँ के किसानों हेतु नहर के अंतिम छोर पर कृषि के लिए सिंचाई जल की कम उपलब्धता की स्थिति पैदा हो जाती है इसलिए, वहाँ पर अरहर के साथ उड़द/धान की उन्नत खेती करने का सुझाव दिया गया। इस सफल प्रयास को किसानों की सहभागिता के माध्यम से पुरा किया गया। किसानों के खेत पर अरहर एवं धान तथा धान/उडद फसलों की सहफसली खेती के किये गये अनुसंधान परीक्षणों के परिणाम तालिका ७ में प्रस्तुत किये गये हैं।

तालिका 7. चाँदपुर रजबहा के अंतिम छोर पर विभिन्न फसल पद्धतियों के साथ आयोजित अनुसंधान परीक्षणों के परिणाम

क्र. सं.	फसल पद्धति	अरहर समतुल्य उपज (क्विटल/हे)	कुल लागत (₹/हे)	कुल लाभ (₹/हे)	शुद्ध लाभ (₹/हे)	सिंचाई जल की मात्रा (मिमी)	सिंचाई जल में बचत (मिमी)
1.	समतल भूमि पर अरहर की बुआई	13.4	14500	56406	41906	80	-
2.	मेड़ों पर अरहर की दो पंक्तियों की बुआई	18.6	17500	77910	60410	60	20
3.	अरहर की दो पंक्तियों की ऊँची क्यारियों पर बुआई तथा धान की पाँच पंक्तियों की निचली क्यारियों में बुआई	23.4	27500	98322	70822	120	-
4.	अरहर की दो पंक्तियों एवं उड़द की तीन पंक्तियों की ऊँची क्यारियों पर बुआई	24.2	21500	101724	80224	60	60

ऊपर दी गई तालिका 7 से यह स्पष्ट हो जाता है कि अरहर की एकल खेती करने के बजाय यदि इसकी उड़द/धान जैसी फसलों के साथ सहफसली खेती की जाए तो किसानों को अधिक कृषि आय प्राप्त होती है जो आज के समय की आवश्यकता है।

- अरहर की बुआई समतल भूमि पर करने के स्थान पर मेड़ों पर करने से ₹ 18504 प्रति हेक्टेयर अतिरिक्त शुद्ध लाभ प्राप्त हुआ। मेड़ों पर अरहर की बुआई करने से समतल भूमि पर बुआई करने की तुलना में 20 मिलीमीटर सिंचाई जल का कम उपयोग हुआ जिससे सिंचाई जल की बचत प्राप्त होती है।
- 2. ऊँची क्यारियों पर अरहर एवं नीचे की क्यारियों की समतल भूमि पर धान की

सहफसली खेती करने पर केवल अरहर की मेड़ों पर एकल खेती करने की अपेक्षा ₹ 10412 प्रति हेक्टेयर एवं समतल भूमि पर अरहर की एकल खेती (पारंपरिक कृषि पद्धति) की अपेक्षा ₹ 28916 प्रति हेक्टेयर का अतिरिक्त शुद्ध लाभ प्राप्त हआ।

3. ऊँची क्यारियों पर अरहर की दो पंक्तियों एवं उड़द की तीन पंक्तियों के साथ सहफसली खेती करने पर अरहर+धान की सहफसली खेती की अपेक्षा ₹ 9402 प्रति हेक्टेयर, मेड़ों पर अरहर की एकल खेती की अपेक्षा ₹ 19814 प्रति हेक्टेयर एवं समतल भूमि पर अरहर की एकल खेती (पारंपरिक कृषि पद्धति) की अपेक्षा ₹ 38318 प्रति हेक्टेयर का अतिरिक्त शुद्ध लाभ प्राप्त हुआ।

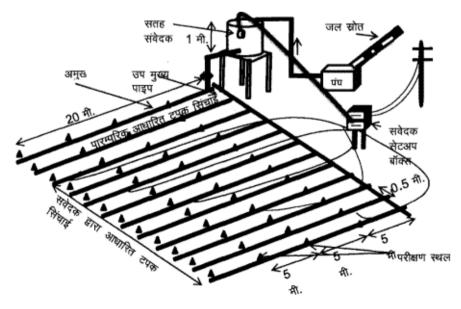
निष्कर्ष

किसानों की सहभागिता के साथ उनके खेतों पर किये गये अनुसंधान प्रयोगों के आधार पर नहर के अंतिम छोर पर कम जल की उपलब्धता की स्थिति के तहत अरहर के साथ उड़द/अगेती धान की सहफसली खेती पारंपरिक अरहर की खेती की तुलना में क्रमश: 91.4 % एवं 69 % अधिक लाभप्रद पायी गयी है। अत: किसानों को नहर के अंतिम छोर पर सिंचाई जल की कम उपलब्धता की स्थिति में अरहर के साथ उड़द एवं धान की सहफसली खेती करने का सुझाव दिया जाता है।

भूमि और जल संसाधन कृषि की बुनियादी जरूरतें हैं और किसी भी देश के आर्थिक विकास के लिए यह दोनों संसाधन बहत ही महत्वपूर्ण हैं। यह सर्वविदित है कि बढ़ती आबादी के कारण इन संसाधनों की माँग लगातार बढती रहेगी। वर्तमान में खाद्य आपूर्ति की तुलना में विश्व की जनसंख्या तेजी से बढ़ रही है। दुनिया में कुल 3% ही जल उपयोग हेत् उपलब्ध है जबकि भारत में केवल 2.4% भू-भाग में ही जल उपलब्ध है। कृषि में कुल उपलब्ध पानी का 70% से 80% उपयोग हो जाता है। इस गंभीर जल संकट के दौर में कृषि हेतु जल की बचत करना बहुत ही आवश्यक हो गया है। ड्रिप सिंचाई विधि में पाइप नेटवर्क का उपयोग करके खेतों में पानी का वितरण किया जाता है और इसमें पाइप नेटवर्क से एमिटर्स द्वारा बूँद-बूँद कर के पौधों को सिंचाई जल दिया जाता है। ड़िप सिंचाई पद्धति में बहुत सारे लाभों के बावजूद, इसके पारंपरिक नेटवर्क में कई समस्याएं सामने आ रही हैं। इन समस्याओं के समाधान हेतु गुरुत्वाकर्षण विधि एवं मुदा नमी संवेदक प्रणाली के साथ ड़िप सिंचाई पद्धति का उपयोग नमी के संरक्षण के लिए एक बहुत ही उपयुक्त दृष्टिकोण है एवं यह देश में खाद्यान की माँग को पूरा करने के लिए कृषि से अधिक उपज के उत्पादन में सहायक साबित हो सकता है।

स्वामी विवेकानंद कृषि अभियांत्रिकी एवं प्रोद्योगिकी महाविधालय, इंदिरा गाँधी कृषि महाविधालय, रायपुर, छत्तीसगढ़ के मृदा एवं जल अभियांत्रिकी विभाग के वैज्ञानिकों द्वारा मृदा आद्रता आधारित सवंदेक का उपयोग कर टपक सिंचाई प्रणाली का निष्पादन एवं मूल्यांकन विषय पर एक अनुसंधान कार्य आयोजित किया गया। इस अनुसंधान प्रयोग का उद्देश्य मृदा में नमी के मूल्यांकन के लिए कम लागत वाली संवेदक प्रणाली को एकीकृत करना और स्थापित करना था। कम लागत वाली गुरुत्वाकर्षण संचालित सिंचाई के साथ मृदा आद्रता संवेदक प्रणाली को समायोजित करके ड्रिप सिंचाई प्रणाली का मूल्यांकन किया गया। इस प्रयोग का परीक्षण वर्ष 2017-18 के दौरान भिंडी की फसल में किया गया। इस प्रकार विकसित की गई सूक्ष्म सिंचाई प्रणाली से 27 से 42 प्रतिशत पानी की बचत की जा सकती है। इस अनुसंधान में मृदा से

मृदा आद्रता संवेदक का गुरुत्वाकर्षण प्रणाली के साथ निष्पादन एवं मूल्यांकन



जीत राज, धीरज खलखो एवं महेंद्र प्रसाद त्रिपाठी

मृदा एवं जल अभियांत्रिकी विभाग, स्वामी विवेकानन्द कृषि अभियांत्रिकी एवं प्रौद्योगिकी महाविधालय, इंदिरा गांधी कृषि विश्वविधालय, रायपुर (छत्तीसगढ.)

वाष्पीकरण और जल निकास द्वारा होने वाले जल के नुकसान को कम करने का प्रयास किया गया जो जल उपयोग दक्षता में वृद्धि करने में सहायक सिद्ध हो सकता है। मृदा नमी संवेदक आधारित ड्रिप सिंचाई तंत्र मृदा और पौधों की स्थिति का अवलोकन करने की सुविधा प्रदान करता है। यह तंत्र निर्णय लेने की क्षमता एवं नियंत्रण प्रणालियों के संयोजन के साथ फसल की जल की आवश्यकता के अनुसार सही समय पर सिंचाई प्रदान करता है। इस अनुसंधान प्रयोग का विवरण तालिका 8 और तालिका 9 में प्रस्तुत किया गया है।

गुरुत्वाकर्षण द्वारा ड्रिप सिंचाई प्रणाली में 750 लीटर ओवरहेड (कुल ऊंचाई 3.55 मीटर) वाली टंकी का सिंचाई के लिए इस्तेमाल किया गया। इस प्रयोग में ड्रिप सिंचाई पद्धित के दो उपचारों का परीक्षण किया गया जैसे (1) पारंपिरक ड्रिप सिंचाई (नियंत्रण) तथा (2) मृदा नमी संवेदक आधारित ड्रिप सिंचाई। नियंत्रण सिंचाई के उपचार में जल को व्यवहारिक पद्धित के आधार पर प्रदान किया गया तथा और संवेदक आधारित उपचार में जल को मृदा में उपस्थित नमी के अनुसार प्रदान किया गया। नीचे दिये गए चित्र में इस अनुसंधान प्रयोग के विभिन्न अवयवों को दर्शाया गया है।

प्रायोगिक तंत्र एवं विभिन्न अवयव

पारंपरिक सिंचाई और सेंसर आधारित डिप सिंचाई के लिए क्रमशः 2 और 10 लाइनों का उपयोग किया गया। गीले (वेटिंग) पैटर्न को 0.25 किलोग्राम प्रति वर्ग सेमी चलित (ऑपरेटिंग) दबाव पर मापा गया। 15, 30, 60 और 90 मिनटों के बाद गीली मुदा की चौडाई और गहराई को मापा गया। अधिकतम क्षैतिज गीले क्षेत्र की गहराई क्रमशः ४.२. ८.२. ११.२ और १६.४ सेमी पाई गई जबकि अधिकतम ऊर्ध्वाधर गीले क्षेत्र की चौडाई को क्रमशः 8.4. 12.4. 20.1 और 22.3 सेमी दर्ज किया गया। औसतन 1.3 लीटर प्रति घंटे की निर्वहन दर के साथ चलित दबाव 0.25 किग्रा वर्ग सेमी था। इस प्रयोग में मदा में उपस्थित नमी के आधार पर सिंचाई के स्वचालित प्रबंधन के लिए सेंसर आधारित सिंचाई नियंत्रक प्रणाली स्थापित की गई। इसके लिये प्रोग्रामेबल लॉजिकल यूनिट (पीएलसी) आंतरिक सर्किट, तार युक्त सेंसर सहित प्रोसेसर (नियंत्रक) जैसे विभिन्न उपकरणों को उपयोग में लिया गया।

तालिका ८. प्रयोगात्मक विवरण

फसल	ਮਿੰਤੀ
वैज्ञानिक नाम	एबेलमोस्चस एस्कुलेंटस एल
विविधता	सम्राट (ननहेम)
प्रयोग सकल क्षेत्र	120 वर्ग मीटर (20 मीटर X 0.5 मीटर X 12)
प्रयोग नेट क्षेत्र:	72 वर्ग मीटर (20 मीटर X 0.3 मीटर 12)
पंक्ति से पंक्ति की दुरी	50 सेंटीमीटर
पौधो से पौधो की दुरी	30 सेंटीमीटर
टैंक क्षमता	750 लीटर
टुलु पंप	0.5 हॉर्स पावर (0.7 लीटर प्रति सेकंड)
डिलिवरी हेड	0.05 मीटर
सक्शन हेड	1.02 मीटर

तालिका ९. अनुसंधान प्रयोग हेतु उपचारों विवरण

	संवेदक (सेंसर) आधारित प्रणाली	नियंत्रक प्रणाली
सिंचाई	क्षेत्र क्षमता (80-50%) नमी के अनुसार	व्यवहारिक पद्धति के अनुसार सिंचाई
सकल क्षेत्र	100 वर्ग मीटर (20 मी × 0.5 मी × 10)	20 वर्ग मीटर (20 मी × 0.5 मी × 2)
वास्तविक बोया गया क्षेत्रफल	60 वर्ग मीटर (20 मी×0.3 मी ×10)	12 वर्ग मीटर (20 मी × 0.3 मी × 2)
पार्श्व रेखाओं की संख्या	10	2
पौधों की संख्या	670	134

सेंसर आधारित सिंचाई नियंत्रक प्रणाली में नियंत्रक क्लोज लूप कंट्रोल के सिद्धांत पर काम करता है तथा सेंसर मृदा में नमी के स्तर को मापता है और 4-20 मिली एम्पियर संकेतक के रूप में बांट देता है जो कि इस नियंत्रक की प्राथमिक (इनपुट) इकाई होती है। इस प्रयोग में 4 मिली एम्पियर के संकेत का मतलब है कि मृदा में नमी की कमी होना और 20 मिली एम्पियर के संकेत का मतलब मृदा में नमी का पर्याप्त होना है। यह समायोजित (कैलिब्रेटेड) सेंसर मृदा में वांछित नमी के स्तर पर पंप को संचालित करने में सक्षम बनाता है और फसल को सिंचाई के लिए पंप के स्विच को बंद या चालू करने के लिए नियंत्रक को संकेत देता है। मृदा नमी आधारित सेंसर को मृदा में मौजूद नमी और सिग्नल इनपुट के बीच सहसंबंध के आधार पर कैलिब्रेटेड किया गया। मृदा नमी संवेदक आधारित अनुसंधान के परिणामों से यह पता चला कि ड्रिप सिंचाई प्रणाली के तहत यह न केवल फसलों में अवांछित नमी तनाव को रोक देता है बल्कि सिंचाई के जल को सही मात्रा में और उचित समय पर प्रदान करने के लिए एक प्रभावी विधि भी साबित हो सकता है। नियंत्रण प्रणाली एवं सेंसर आधारित सिंचाई प्रणालियों की अलग-अलग लाइनों के तहत प्राप्त जल उत्पादकता को तालिका 10 में बताया गया है।

तालिका 10. विभिन्न उपचारों के तहत जल की उपयोग दक्षता

उपचार		उपज (किलो प्रति हेक्टर)	जल का कुल वितरण (सेमी)	जल उपयोग दक्षता (किग्रा/हे-मिमी)
नियंत्रक प्रणाली	लाइन1	13425.3	48.5	27.68
	लाइन2	12933.2	48.5	26.66
सेंसर आधारित प्रणाली	लाइन3	12467.4	31.16	40.01

लाइन4	13471.7	31.16	43.23
लाइन5	13894.4	31.16	44.59
लाइन6	12749.5	31.16	40.92
लाइन7	14571.5	31.16	46.76
लाइन8	13698.8	31.16	43.96
लाइन9	13654.4	31.16	43.82
लाइन10	13963.1	31.16	44.81
लाइन11	13674.4	31.16	43.88
लाइन12	12618.3	31.16	40.50

अशांकन (कैलिब्रेशन) के परिणामों के मुताबिक सेंसर वास्तविक नमी के स्तर पर संचालित करने के लिए सक्षम है और यह फसल में सिंचाई के लिए पंप को बंद और चालू करने के लिए नियंत्रक (पीएलसी) को संकेत देता है। इस सुविधा के कारण यह सिंचाई प्रणाली न केवल फसलों को अवांछित नमी के तनाव से बचायेगी बल्कि सिंचाई के जलकी मात्रा को उचित समय पर प्रदान करने में सहायक है जिससे फसलों

की उपज में वृद्धि सुनिश्चित हो सकती है।

मृदा और जल अभियांत्रिकी विभाग, रायपुर द्वारा अपने अनुसंधान खेत पर इस मृदा नमी संवेदक आधारित ड्रिप सिंचाई प्रणाली की स्थापना सफलतापूर्वक की गई। इस विकसित संवेदक प्रणाली को सफलतापूर्वक अंशांकित करके इसे भिंडी की फसल के तहत 80-50% क्षेत्र क्षमता के लिए उपयोगी पाया गया। सेंसर उपचार

सिंचाई प्रणाली और नियंत्रण सिंचाई प्रणाली दोनों में से बेहतर परिणाम सेंसर उपचार सिंचाई प्रणाली से प्राप्त हुए। क्योंकि यह प्रणाली बेहतर जल उपयोग दक्षता प्रदान करती है तथा इस प्रणाली से भिंडी की फसल के पौधों की औसतन ऊंचाई 110.90 सेमी और उपज 14571.5 किलोग्राम प्रति हेक्टर प्राप्त हुई।

हम कृषि की विभिन्न उन्नत तकनीकों को अपनाने के कारण खाद्यान उत्पादन में आत्मनिर्भरता प्राप्त कर चुके हैं जो उत्पादन पद्धति में अधिकत्तम उत्पादन और निम्रतम जोखिम को सुनिश्चित करती हैं। इसके अतिरिक्त, मशीनीकरण और कठिन परिश्रम को कम करने वाली तकनीकों ने किसानों की कामकाजी और जीवन स्तर की स्थितियों में सुधार किया है। लेकिन आज भी किसानों को अपने खेत की सिंचाई करते समय अनेक समस्याओं का सामना करना पड रहा है। आजकल बिजली की आपूर्ति के मुद्दों के कई मामले सामने आ रहे हैं जिसकी वजह से पंप आधारित सिंचाई जल की उपयोग दक्षता बहुत गंभीर हो गयी है। कई स्थानों पर तो किसानों को कृषि के लिये बिजली की आपूर्ति केवल रात के समय में ही उपलब्ध रहती हैं। अत: किसानों को अपनी रात की नींद की कीमत पर खेत में पंप चलाने के लिए जाना पडता है। हालांकि, कुछ किसानों द्वारा रात की सिंचाई को खेत से वाष्पीकरण के नुकसान को कम करने के लिए प्राथमिकता दी जाती है। इस तरह इससे असुविधाजनक स्थिति बन जाती है।

जल उपयोगकर्ता संघों द्वारा संचालित लिफ्ट सिंचाई पंपों को सिंचित कृषि के साथ-साथ मुख्य कृषि मौसम की अवधि के दौरान भी व्यस्तम समय-सारणी का सामना करना पडता है। इसलिये, यह स्थिति एक पंप संचालक को 24 घंटे कार्य करने पर मजबूर कर देती है। अंतर्देशीय झींगा (मछली) पालन की स्थिति में मोटोराइज्ड एरेसन पेडल को एक दिन में कई बार चलाने की आवश्यकता होती है जिसके लिए विशेष रूप से वर्षा के मौसम में एक कुशल मोटर संचालक की आवश्यकता पड़ती है जब वर्षा के बाद विघटित ऑक्सिजन का स्तर तत्काल नीचे चला जाता है। कई बार किसान अपनी फसल के सिंचाई के दायित्व के कारण पूरी तरह से दूर के स्थानों पर सामाजिक कार्य में भाग लेने में असमर्थ हो जाते हैं। किसानों द्वारा उपयुक्त समस्याओं का सामना करने के उद्देश्य को ध्यान में रखते हुए एक मोबाइल एप आधारित रिमोट संचालित पंप/मोटर साधन का विकास किया गया जो किसी भी समय किसी भी स्थान से किसानों को पारंपरिक रूप से अपने पंप/मोटर के संचालन में सक्षम बना सकता है।

मोबाइल एप आधारित रिमोट संचालित पंप प्रणाली

देवब्रत सेठी, ओ.पी. वर्मा और एस.के. अम्बष्ट भाकृअनुप-भारतीय जल प्रबंधन संस्थान, भुवनेश्वर

प्रणाली के घटक

मोबाइल एप आधारित रिमोट संचालित पंप प्रणाली का तीन घटकों के साथ विकास किया गया।

- मोबाइल/पंप से जुड़ा एक हार्डवेयर उपकरण
- ॥. सर्वर के तौर पर एक क्लाउड प्लेटफॉर्म।
- ॥।. किसानों के मोबाइल फोन में एंड्रोइड एप।

i. हार्डवेर उपकरण

पंप/ मोटर से जुड़ा साधन/युक्ति दूरवर्ती

संचालन स्विच की तरह काम करता है जिसमें स्विच को ऑन या ऑफ करके पावर की आपूर्ति की जाती है। यह इंटरनेट के माध्यम से क्लाउड सर्वर के साथ लगातार संबन्धित रहता है और पंप के संचालन के लिए अनुमति प्रदान करता है। क्लाउड सर्वर के माध्यम से किसानों के मोबाइल फोन से भी संबन्धित रहता है। अंतत मोबाइल एप में दिया गया कमांड क्लाउड सर्वर में अद्यतन हो जाता है और स्विच ऑन/ऑफ करने के लिए पंप/मोटर से जुड़ा यक्ति में कमांड भेजता है।

ii) सर्वर के तौर पर क्लाउड मंच

यह मोबाइल एप और उपकरण के बीच एक सेतु (संबंध) की तरह कार्य करता है। यह टाइम स्टाम्प के साथ मोबाइल एप के द्वारा भेजी जा रही सभी कमांड्स को निष्पादित और अपडेट करता है। पंप का स्विच ऑन/ऑफ का समय वर्ष-महिना-दिन-घंटा-मिनट-सेकंड के प्रारूप के रूप में दर्ज हो जाता है। अत: हम प्रत्येक स्पेल में बड़ी आसानी से पंप संचालन की अवधि की गणना कर सकते हैं क्योंकि पंप/मोटर द्वारा उपयोग की गई बिजली और पंप (लीटर/सेकंड) की डिस्चार्ज की दर ज्ञात हो जाती है तो हम आसानी से सिंचित जल की मात्रा और इसके लिए उपयोग हुई ऊर्जा की खपत की गणना कर सकते हैं।

iii) एंड्रोइड एप

इस मोबाइल एप में क्लाउड सर्वर से कमांड्स ग्रहण करने के लिये एंड्रोइड उपकरण को विकसित किया गया। इस एप में एक ऑन और एक ऑफ बटन रखा जाता है। जब (ऑन/ऑफ) बटन को स्पर्श किया जाता है तब एक नया विंडो खुलता है और एक आउटपुट की संख्या प्राप्त होती है जिससे हमें यह संकेत मिलता है कि दी गई कमांड के लिए सर्वर अपडेट हो चुका है।

प्रणाली की लागत

यह अनुमान लगाया गया कि एक सब्जी उत्पादक किसान यदि 4 घंटे के समय तक की प्रत्येक सिंचाई एक महीने में 6-8 बार करता है तो वह एक महीने में 24-32 घंटे तक का समय बचा सकता है। और इससे वह ₹ 900-1200 प्रति महीने बचा सकता है। जल उपयोगकर्ता संघो द्वारा भी लिफ्ट सिंचाई पंप के संचालन हेतु एक कुशल पंप संचालक के किराये की लागत को बचाया जा सकता है। यह भी अनुमान लगाया कि

इस प्रणाली के प्रयोग द्वारा एक मछली पालक किसान प्रति वर्ष ₹ 54000 की बचत कर सकता है। टाइम स्टांपड मोटर पंप संचालन के ऑंकडों की मदद से सिंचित जल की मात्रा और ऊर्जा के उपयोग की गणना की जा सकती है। इस प्रणाली के निर्माण में कुल लागत करीब ₹ 3000 आती है।

प्रणाली के लाभ

- किसानों को सुविधा:- हम सभी को खिलाने वाला किसान एक साधारण मनुष्य हैं जो अपनी सुख-सुविधाओं से समझौता करके अनेक असुविधाजनक स्थितियों में काम करता है। यह तकनीक उसको विशेष रूप से रात के समय बिना खेत में गये अपने घर से आराम से पंप चलाने की सुविधा प्रदान कर सकती है अथवा वह सामाजिक अवसरों में जाने की आवश्यकता के दौरान भी पंप को आसानी से चला सकता है।
- मछली/झींगा पालक किसान भी किसी व्यक्ति को किराये पर रखे बिना खुद एरेटर मोटर को चला सकते हैं।
- टाइम स्टांपड मोटर पंप संचालन के आंकडों की मदद से सिंचित जल की मात्रा और ऊर्जा के उपयोग की गणना की जा सकती है। अत: यह तकनीक जल और ऊर्जा के दक्ष उपयोग में मदद करेगी।

समस्याएं

 मोबाइल नेटवर्क की उपलब्धता इस प्रणाली के कार्य के लिए बहुत ही आवश्यक है। अत: मोबाइल नेटवर्क की

प्रशिक्षणार्थीयों के समक्ष प्रणाली का प्रदर्शन

कमी या नेटवर्क का अस्थायी रूप से ठप या खराब होना एक सीमित कारक है।

 विद्धुत आपूर्ति इसके लिए दूसरा सीमित कारक है क्योंकि पंप के साथ-साथ युक्ति को चलाने के लिए विद्धुत की आवश्यकता होती है।

तकनीक का प्रदर्शन

इस प्रणाली को भाकृअनुप – भारतीय जल प्रबंधन संस्थान, भुवनेश्वर के परिसर में सूक्ष्म सिंचाई से संबन्धित अनुसंधान के भूखंड पर स्थापित किया गया है। इस तकनीक को समय समय पर संस्थान में आने वाले अनुसंधान सलाहकार समिति के सदस्यों और संस्थान में प्रशिक्षण प्राप्त करने आने वाले विभिन्न प्रशिक्षणार्थीयों के समक्ष प्रदर्शित किया गया है।

निष्कर्ष

इस मोबाइल एप आधारित रिमोट नियंत्रित पंप संचालन प्रणाली से किसानों के कठिन

परिक्षम को कम करने में और किसानों की स्थानिक और अस्थायी स्वतंत्रता में वृद्धि होने की आशा है। ठीक उसी समय अधिक सिंचाई पर रोक के द्वारा जल और ऊर्जा की बचत भी प्राप्त की जा सकती है। यह कम कीमत वाली युक्ति किसी भी एंड्रोइड आधारित मोबाइल फोन से उपयोग के लिए उपयुक्त है। यह तकनीक गरीब किसानों के द्वारा भी अपनाने के लिए उपयुक्त है।

श्री थिरु के माथिवन्नन

तमिलनाडु में गन्ना सबसे महत्वपूर्ण व्यावसायिक फसलों में से एक है जिसकी 85 टन/हेक्टेयर की औसत उत्पादकता के साथ लगभग 3.0 लाख हेक्टेयर क्षेत्र में खेती की जाती है। वर्तमान जल संकट की स्थिति को देखते हए गन्ना की उत्पादकता प्रति इकाई सिंचाई जल प्रयोग को बढ़ाने हेतु सिंचाई के पानी का दक्ष उपयोग करना एक महत्वपूर्ण उपाय बन जाता है। गन्ना उत्पादक किसानों द्वारा व्यापक रूप से सिंचाई की बाढ पद्धति का बहुतायत में उपयोग किया जाता है जिससे वाष्पीकरण और वितरण में होने वाले भारी नुकसान के कारण पानी का अपर्याप्त उपयोग हो पाता है। इसके अलावा. गन्ना किसानों को आजकल गन्ने की फसल के लिए विशेष रूप से गन्ने की फसल की खेती हेतु श्रमिकों की अनुपलब्धता के कारण नई चुनौतियों का सामना करना पड़ता है। अकेले ही कटाई की लागत में कुल प्राप्त आय का 30 प्रतिशत भाग खर्च हो जाता है और इसके कारण किसानों को कम श्रम वाली फसलों की गहन खेती करने के लिए मजबूर होना पडता है।

गन्ने की खेती की पारंपरिक विधि में इस समस्या को दूर करने के लिए और गन्ने की खेती को एक लाभदायक फसल बनाने के लिए गन्ने की यंत्रीकृत खेती हेतु उप-सतही ड्रिप फर्टिगेशन प्रणाली पर एक उन्नत तकनीक तमिलनाडू कृषि विश्वविद्यालय द्वारा वर्ष 2008 के दौरान

सफलता की गाथा

गन्ने की यंत्रीकृत खेती हेतु उप-सतही ड्रिप फर्टिगेशन प्रणाली

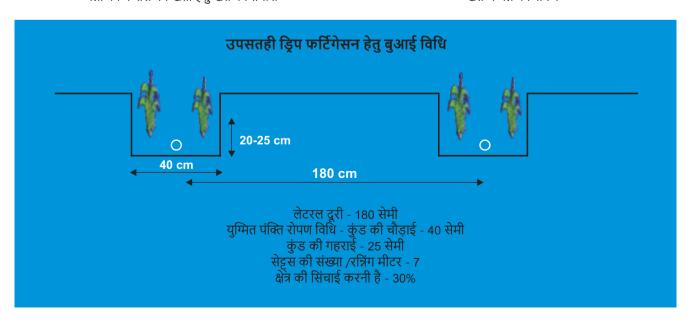
विकसित की गई। पिछले 4 वर्षों के अनुसंधान परिणामों ने स्पष्ट रूप से संकेत दिया कि पारंपरिक तरीके के तहत गन्ना रोपण विधि से प्राप्त उपज 85 टन/हेक्टेयर की तुलना में गन्ने की यंत्रीकृत खेती से 25-30% तक की पानी की बचत के साथ गन्ने की उपज में दोगुनी यानी 170 टन/हेक्टेयर तक अधिक वृद्धि हो सकती है।

तमिलनाडु राज्य के शिवगंगई जिले के थमाराकी गाँव में श्री थिरु के माथिवन्नन प्रगतिशील किसानों में से एक है जो पिछले दस वर्षों से गन्ने की खेती कर रहे हैं। उनके पास कुल 5.25 हेक्टेयर कृषि भूमि है और उनका परिवार पूरी तरह से कृषि पर निर्भर है। उन्होंने गन्ने की खेती के लिए मेड़ एवं कुंड सिंचाई प्रणाली को अपनाया जिससे सिंचाई के पानी और प्रयोग किये गए पोषक तत्वों की बहत बर्बादी होती है। कुओं से सीमित जल की उपलब्धता के कारण वे अपनी भूमि के दो हेक्टेयर क्षेत्र में खेती करते थे और बाकी की भूमि को परती छोड देते थे। जल प्रबंधन पर अखिल भारतीय समन्वित अनुसंधान परियोजना का मदुरै केंद्र समय-समय पर विभिन्न जिलों में किसानों और विस्तार अधिकारियों के लिए विभिन्न जल बचत तकनीकों पर प्रशिक्षण कार्यक्रम आयोजित करता आ रहा है। श्री के माथिवन्नन ने तमिलनाड़ के शिवगंगई जिले में आयोजित प्रशिक्षण कार्यक्रमों में से एक में भाग लिया और गन्ने की खेती की उप सतह ड्रिप सिंचाई विधि के महत्वपूर्ण पहलुओं को सीखा।

उन्होंने अनुसंधान फार्म का दौरा किया और अधिक रस वाले लंबे गन्ने के तनों की संख्या को देखकर बहुत खुश हुए जिनसे अंततः गन्ना की अधिक उपज प्राप्त होती है। इस तकनीक से पूरी तरह आश्वस्त होने के बाद उन्होंने वर्ष 2008 के दौरान अपने 3 हेक्टेयर के खेत में इसको अपनाया और बाद में वर्ष 2009 में एक-एक रेटून फसल की भी खेती की। उन्होंने जल प्रबंधन पर अखिल भारतीय समन्वित अनुसंधान परियोजना के मदुरै केंद्र के वैज्ञानिकों द्वारा दी गई तकनीकी सलाह का भी पालन किया। गन्ने की खेती की उप-सतही विधि पर इस उन्नत तकनीक ने लेआउट से लेकर फसल कटाई तक सभी मशीनीकरण की प्रक्रिया में सुविधा प्रदान की और जिसके कारण गन्ने की खेती के सभी ऑपरेशन समय पर पूरे किए जा सके।

श्री माथिवन्नन कहते हैं, "चूंकि पानी और पोषक तत्व फसल वृद्धि की आवश्यकता के अनुसार प्रयोग किए जाते हैं, इसलिये, हमारी उत्पादकता लगभग 100 प्रतिशत" से काफी अधिक बढ़ चुकी है। आगे वे बताते हैं कि इस तकनीक को अपनाने से मुझे पारंपरिक विधि की तुलना में 112 प्रतिशत से अधिक गन्ने की उपज और 30% तक पानी की बचत प्राप्त हुई (तालिका 11)। अब मुझे विश्वास है कि मैं पानी की बचत के कारण उसी सिंचाई के पानी के साथ गन्ने की खेती में अतिरिक्त क्षेत्र को उगा सकता हूँ। गन्ने में आगे उपसतह तकनीक अधिक रेटून क्षमता और वृद्धिशील आय के लिए गुंजाइश प्रदान करती है और इसलिए, यह तकनीक निश्चित रूप से हमारे गन्ने की खेती को टिकाऊ बनाए रखेगी।

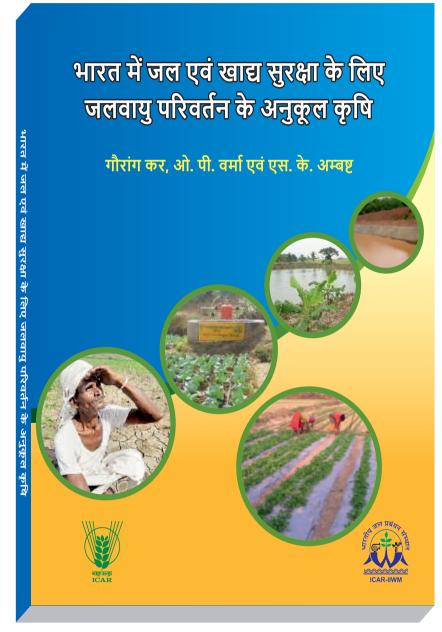
तालिका 11. गन्ने की फसल में उप सतही यंत्रीकृत तकनीक को अपनाने से पहले और बाद में उत्पादकता एवं आय की तुलना


गुणांक	पहले	बाद में
समान जल की मात्रा के साथ बोया गया क्षेत्र (हेक्टेयर)	2	4.5
गन्ना की उपज (टन/हे)	85	180
सकल आय (₹/हे)	1,20,000	2,25,000
खेती की कुल लागत (₹/हे)	70,639	1,23,095
शुद्ध आय (₹/हे)	49,361	1,01,905
लाभ:लागत अनुपात	1.70	2.01

गन्ना की फसल की खेती हेतु खेत की तैयारी

खेत में गन्ने का रोपण

श्री माथिवन्नन के खेत में उपसतही ड्रिप सिंचाई पद्धित के तहत गन्ना की बम्पर फसल


श्री माथिवन्नन पड़ोस के गाँवों और जिलों में इस तकनीक के प्रसार हेतु अन्य किसानों के लिए मॉडल के रूप में सेवारत हैं। यह तकनीक कृषक समुदाय के बीच बहुत ही लोकप्रिय हो रही है और बहुत से किसान इस तकनीक को अपनाने के लिए आगे आ रहे हैं। एक वर्ष के भीतर 5000 एकड़ से भी अधिक क्षेत्रफल को इस प्रणाली के तहत कवर किया गया है।

उपसतही ड्रिप फर्टिगेसन विधि के तहत गन्ना की भरपूर फसल जिससे किसान बहुत अधिक आय प्राप्त कर सकते हैं।

भाकृअनुप – भारतीय जल प्रबंधन संस्थान, भुवनेश्वर के वैज्ञानिकों ने गृह मंत्रालय, भारत सरकार द्वारा राजभाषा गौरव पुरस्कार (प्रथम) प्राप्त किया

हिन्दी में विज्ञान के क्षेत्र में मौलिक पुस्तक लेखन के लिये राजभाषा पुरस्कार की श्रेणी के अंतर्गत डॉ. गौरांग कर (प्रधान वैज्ञानिक), डॉ. ओम प्रकाश वर्मा (वैज्ञानिक) एवं डॉ. सुनील कुमार अम्बष्ट (निदेशक) भाकुअनुप – भारतीय जल प्रबंधन संस्थान, भुवनेश्वर, ओडिशा द्वारा लिखी गई पुस्तक "भारत में जल एवं खाद्य सुरक्षा के लिये जलवायु परिवर्तन के अनुकूल कृषि" को राजभाषा विभाग से वर्ष 2017 के केंद्र सरकार के कार्मिकों हेतु प्रथम पुरस्कार प्राप्त हुआ। यह पुरस्कार 14 सितंबर 2018 को हिन्दी दिवस समारोह के अवसर पर भारत के माननीय उपराष्ट्रपति श्री एम. वेंकैया नायडु के कर कमलों द्वारा प्रदान किया गया। इस समारोह की अध्यक्षता माननीय ग्रहमंत्री, भारत सरकार श्री राजनाथ सिंह जी ने की थी। इस समारोह में श्री हंसराज गंगाराम अहीर जी, माननीय ग्रह राज्य मंत्री तथा श्री किरेन रीजीजू जी, माननीय ग्रह राज्य मंत्री भी उपस्थित थे। हमारे देश में जलवाय परिवर्तन के तहत मौसमी चरण घटनाओं की आवृति वर्ष प्रति वर्ष बहुत बढ़ गई है। और पहले से हैं। हम भारत के कई हिस्सों में मानसून की देरी से शुरुआत, मानसून की जल्द वापसी और सुखे के अंतरालों जैसी गंभीर समस्याओं का सामना कर रहे हैं जो की जलवायु परिवर्तन के ही परिणाम हैं। इस पुस्तक में जलवायु परिवर्तन के इन प्रतिकुल प्रभावों को ध्यान में रखते हुए कृषि क्षेत्र में उचित जल के आवंटन एवं प्रबंधन के साथ-साथ जलवायु परिवर्तन के प्रतिकूल प्रभावों में कमी लाने तथा महत्त्वपूर्ण जलवायु अनुकूलित कृषि पद्धतियों का वर्णन किया गया है। हमारे देंश का कोई भी किसान समूह इन तकनीकों को अपनाकर वर्तमान में हो रहे जलवायु परिवर्तन या भविष्य में कृषि पर प्रतिकूल जलवायु के पड़ने वाले हानिकारक प्रभावों से बचकर अधिक फसल उत्पादन प्राप्त कर सकते हैं।

राजभाषा गौरव पुरस्कार (प्रथम) पुरस्कृत पुस्तक

माननीय उप राष्ट्रपति, भारत सरकार श्री एम. वेंकैया नायडु जी से गौरांग कर (प्रधान वैज्ञानिक), डॉ. ओम प्रकाश वर्मा (वैज्ञानिक) एवं डॉ. सुनील कुमार अम्बष्ट (निदेशक) भाकृअनुप – भारतीय जल प्रबंधन संस्थान, भुवनेश्वर राजभाषा गौरव पुरस्कार (प्रथम) प्राप्त करते हुए।

कृषि-जल

जल प्रबंधन पर हिन्दी पत्रिका

लेखकों से अनुरोध

इस पत्रिका के आगामी अंकों में आलेख देने वाले सभी अनुसंधान कर्मियों, वैज्ञानिकों एवं अधिकारियों का भाकृअनुप – भारतीय जल प्रबंधन संस्थान आभारी रहेगा। सभी प्रबुद्ध पाठकों व किसानों से हमारा विनम्न अनुरोध है कि वे कृषि व जल प्रबंधन से संबन्धित आलेख हमें प्रकाशन हेतु भेजने का कष्ट करें, ताकि खेती और विशेषकर कृषि जल प्रबंधन से संबन्धित जानकारी उपलब्ध करवाने के अपने उद्देश्य में आपकी यह पत्रिका अपनी पूरी भूमिका सजगता से अदा कर सके। पाठकों की बहुमूल्य प्रतिक्रियाओं का हमें इंतजार रहेगा।

पत्रिका में प्रकाशित आलेख व सामग्री लेखकों की अपनी है तथा संपादकों का इससे सहमत होना आवश्यक नहीं है।

कृषि-जल

जल प्रबंधन पर हिन्दी पत्रिका

डॉ. सुनील कुमार अम्बष्ट, निदेशक, भाकृअनुप – भारतीय जल प्रबंधन संस्थान, भुवनेश्वर द्वारा प्रकाशित तथा प्रिंटेक ऑफसेट प्राइवेट लिमिटेड, भुवनेश्वर द्वारा मुद्रित